Multiple Length Scales (multiple + length_scale)

Distribution by Scientific Domains


Selected Abstracts


Supramolecular Self-Assembly: Self-Assembly of a Donor-Acceptor Dyad Across Multiple Length Scales: Functional Architectures for Organic Electronics (Adv. Funct.

ADVANCED FUNCTIONAL MATERIALS, Issue 15 2009
Mater.
More than the sum of its parts: by covalently coupling polycyclic donor and acceptor moieties, Samori and co-workers demonstrate on page 2486 that a donor,acceptor dyad, based on nanographene and perylene, self-assembles into highly ordered supramolecular architectures with nanosegregated coaxial donor and acceptor regions. The cover image features an atomic force microscopy image of mesoscopic ribbons along with the proposed crystallographic arrangement of the constituent molecules. [source]


Self-Assembly of a Donor-Acceptor Dyad Across Multiple Length Scales: Functional Architectures for Organic Electronics

ADVANCED FUNCTIONAL MATERIALS, Issue 15 2009
Jeffrey M. Mativetsky
Abstract Molecular dyads based on polycyclic electron donor (D) and electron acceptor (A) units represent suitable building blocks for forming highly ordered, solution-processable, nanosegregated D-A domains for potential use in (opto)electronic applications. A new dyad, based on alkyl substituted hexa- peri -hexabenzocoronene (HBC) and perylene monoimide (PMI) separated by an ethinylene linker, is shown to have a high tendency to self-assemble into ordered supramolecular arrangements at multiple length scales: macroscopic extruded filaments display long-range crystalline order, nanofiber networks are produced by simple spin-coating, and monolayers with a lamellar packing are formed by physisorption at the solution-HOPG interface. Moreover, highly uniform mesoscopic ribbons bearing atomically flat facets and steps with single-molecule heights self-assemble upon solvent-vapor annealing. Electrical measurements of HBC-PMI films and mesoscopic ribbons in a transistor configuration exhibit ambipolar transport with well balanced p- and n-type mobilities. Owing to the increased level of order at the supramolecular level, devices based on ribbons show mobility increases of more than one order of magnitude. [source]


Fractal Approach to Hierarchically Evolved Laser Processed CaP Coatings

ADVANCED ENGINEERING MATERIALS, Issue 6 2010
Anil Kumar Kurella
This paper discusses a fractal approach to understand nature inspired laser surface engineered coatings. Via a laser surface engineering process a multi-scale CaTiO3 coating was synthesized on Ti alloy surface. At faster laser processing speeds star like CaTiO3 features evolved inside rings rich in calcium phosphate and TiO2. The porosity developed through the distribution of these particles results in a multi-scale distribution. Fractal analysis revealed that such laser processed surfaces had consistent fractal dimension over multiple length scales. This multi-scale and multi-phase surface microstructure contributed to enhanced biomimetic precipitation. [source]


Engineering Nanoparticle Cluster Arrays for Bacterial Biosensing: The Role of the Building Block in Multiscale SERS Substrates

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
Linglu Yang
Abstract Noble metal nanoparticle cluster arrays (NCAs) are a novel class of engineered substrates for surface enhanced Raman spectroscopy (SERS), in which the noble metal nanoparticles interact on multiple length scales to create a multiscale E-field cascade enhancement. In this work the role of the building block for the NCA performance is quantified. Periodic NCAs with constant cluster diameter (D = 200 nm) but variable nanoparticle diameter (d) and intercluster separation (,) were assembled on glass and their optical response and SERS enhancement were systematically characterized as a function of D, ,, and d. An increase of d from 40 to 80 nm and simultaneous decrease of , from 200 to 50 nm led to an improvement of the ensemble averaged SERS enhancement factor by a factor of up to ,8. The coefficient of variation (cv) of the enhancement factors (G) is significantly lower for the d = 80 nm NCAs than for the d = 40 nm and d = 60 nm NCAs. Optimized (D = 200 nm, , = 50 nm, d = 80 nm) NCAs show the overall highest signal reproducibility of all investigated NCAs and random nanoparticle substrates and achieve effective single cell detection sensitivity. [source]


Self-Assembly of a Donor-Acceptor Dyad Across Multiple Length Scales: Functional Architectures for Organic Electronics

ADVANCED FUNCTIONAL MATERIALS, Issue 15 2009
Jeffrey M. Mativetsky
Abstract Molecular dyads based on polycyclic electron donor (D) and electron acceptor (A) units represent suitable building blocks for forming highly ordered, solution-processable, nanosegregated D-A domains for potential use in (opto)electronic applications. A new dyad, based on alkyl substituted hexa- peri -hexabenzocoronene (HBC) and perylene monoimide (PMI) separated by an ethinylene linker, is shown to have a high tendency to self-assemble into ordered supramolecular arrangements at multiple length scales: macroscopic extruded filaments display long-range crystalline order, nanofiber networks are produced by simple spin-coating, and monolayers with a lamellar packing are formed by physisorption at the solution-HOPG interface. Moreover, highly uniform mesoscopic ribbons bearing atomically flat facets and steps with single-molecule heights self-assemble upon solvent-vapor annealing. Electrical measurements of HBC-PMI films and mesoscopic ribbons in a transistor configuration exhibit ambipolar transport with well balanced p- and n-type mobilities. Owing to the increased level of order at the supramolecular level, devices based on ribbons show mobility increases of more than one order of magnitude. [source]


The effect of particle shape and grain-scale properties of shale: A micromechanics approach

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 11 2010
J. A. Ortega
Abstract Traditional approaches for modeling the anisotropic elasticity response of the highly heterogeneous clay fabric in shale have mainly resorted to geometric factors such as definitions of particles shapes and orientations. However, predictive models based on these approaches have been mostly validated using macroscopic elasticity data. The recent implementation of instrumented indentation aimed at probing nano-scale mechanical behaviors has provided a new context for characterizing and modeling the anisotropy of the porous clay in shale. Nanoindentation experimental data revealed the significant contribution of the intrinsic anisotropy of the solid clay to the measured elastic response. In this investigation, we evaluate both the effects of geometric factors and of the intrinsic anisotropic elasticity of the solid clay phase on the observed anisotropy of shale at multiple length scales through the development of a comprehensive theoretical micromechanics approach. It was found that among various combinations of these sources of anisotropy, the elastic response of the clay fabric represented as a granular ensemble of aligned effective clay particles with spherical morphology and anisotropic elasticity compares satisfactorily to nanoindentation and ultrasonic pulse velocity measurements at nano- and macroscopic length scales, respectively. Other combinations of sources of anisotropy could yield comparable predictions, particularly at macroscopic scales, at the expense of requiring additional experimental data to characterize the morphology and orientations of particles. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Micromechanical analysis of failure propagation in frictional granular materials

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 15 2009
Antoinette Tordesillas
Abstract The extent to which the evolution of instabilities and failure across multiple length scales can be reproduced with the aid of a bifurcation analysis is examined. We adopt an elastoplastic micropolar constitutive model, recently developed for dense cohesionless granular materials within the framework of thermomicromechanics. The internal variables and their evolution laws are conceived from a direct consideration of the dissipative mechanism of force chain buckling. The resulting constitutive law is cast entirely in terms of the particle scale properties. It thus presents a unique opportunity to test the potential of micromechanical continuum formulations to reproduce key stages in the deformation history: the development of material instabilities and failure following an initially homogeneous deformation. Progression of failure, initiating from frictional sliding and rolling at contacts, followed by the buckling of force chains, through to macroscopic strain softening and shear banding, is reproduced. Bifurcation point, marking the onset of shear banding, occurred shortly after the peak stress ratio. A wide range of material parameters was examined to show the effect of particle scale properties on the progression of failure. Model predictions on the thickness and angle of inclination of the shear band and the structural evolution inside the band, namely the latitudinal distribution of particle rotations and the angular distributions of contacts and the normal contact forces, are consistent with observations from numerical simulations and experiments. Copyright © 2009 John Wiley & Sons, Ltd. [source]