Home About us Contact | |||
Multicompartment Micelles (multicompartment + micelle)
Selected AbstractsMulticompartment Micelles From ,-Shaped ABC Block CopolymersCHINESE JOURNAL OF CHEMISTRY, Issue 11 2007Jun XIA Abstract Dissipative particle dynamics simulations were performed on the morphology and structure of multicompartment micelles formed from ,-shaped ABC block copolymers in water. The influences of chain architectures were studied in a systematic way, and a rich variety of morphologies were observed, such as spherical, wormlike, X-shaped, Y-shaped, ribbon-like, layered rod-like, layered disk-like, as well as network morphologies. The simulations show that the distance between the two grafts plays an important role in control of the morphology. Since ,-shaped ABC block copolymers can be reduced to linear ABC and star ABC block copolymers, they are good model copolymers for studying the self-assembly of complex block copolymers into micelles. The knowledge obtained in this work as well as the new morphologies identified provide useful information for future rational design and synthesis of novel multicompartment micelles. [source] Understanding Multicompartment Micelles Using Dissipative Particle Dynamics SimulationMACROMOLECULAR THEORY AND SIMULATIONS, Issue 2 2007Chongli Zhong Abstract Multicompartment micelles are a new class of nanomaterials that may find wide applications in the fields of drug delivery, nanotechnology and catalysis. Due to their structural complexity, as well as the wide parameter space to explore, experimental investigations are a difficult task, to which molecular simulation may contribute greatly. In this paper, the application of the dissipative particle dynamics simulation technique to the understanding of multicompartment micelles is introduced, illustrating that DPD is a powerful tool for identifying new morphologies by varying block length, block ratio and solvent quality in a systematic way. The formation process of multicompartment micelles, as well as shear effects and the self-assembly of nanoparticle mixtures in multicompartment micelles, can also be studied well by DPD simulation. The present work shows that DPD, as well as other simulation techniques and theories, can complement experiments greatly, not only in exploring properties in a wider parameter space, but also by giving a preview of phenomena prior to experiments. DPD, as a mesoscopic dynamic simulation technique, is particularly useful for understanding the dynamic processes of multicompartment micelles at a microscopic level. [source] Solution self-assembly of tailor-made macromolecular building blocks prepared by controlled radical polymerization techniquesPOLYMER INTERNATIONAL, Issue 9 2006Jean-François Lutz Abstract This review describes the preparation of colloidal aggregates (spherical micelles, cylindrical micelles, polymer vesicles, multicompartment micelles, polyion complexes, schizophrenic micelles) using bottom-up self-assembly approaches. In particular, it focuses primarily on the self-organization of well-defined macromolecular building blocks (macrosurfactants, polysoaps, polyelectrolytes) synthesized by controlled radical polymerization techniques such as atom transfer radical polymerization, reversible addition fragmentation transfer polymerization and nitroxide-mediated polymerization. The goal of this review is to highlight that these versatile techniques of polymer synthesis allow the preparation of unprecedented nanostructures in dilute solutions. Copyright © 2006 Society of Chemical Industry [source] Multicompartment Micelles From ,-Shaped ABC Block CopolymersCHINESE JOURNAL OF CHEMISTRY, Issue 11 2007Jun XIA Abstract Dissipative particle dynamics simulations were performed on the morphology and structure of multicompartment micelles formed from ,-shaped ABC block copolymers in water. The influences of chain architectures were studied in a systematic way, and a rich variety of morphologies were observed, such as spherical, wormlike, X-shaped, Y-shaped, ribbon-like, layered rod-like, layered disk-like, as well as network morphologies. The simulations show that the distance between the two grafts plays an important role in control of the morphology. Since ,-shaped ABC block copolymers can be reduced to linear ABC and star ABC block copolymers, they are good model copolymers for studying the self-assembly of complex block copolymers into micelles. The knowledge obtained in this work as well as the new morphologies identified provide useful information for future rational design and synthesis of novel multicompartment micelles. [source] |