Home About us Contact | |||
Mutational Processes (mutational + process)
Selected AbstractsNew method to measure minisatellite variant repeat variation in population genetic studiesAMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 4 2002M. Brión The classical analysis of minisatellite variant repeat (MVR) variation using modular structures is limited by the lack of knowledge of the mutational process involved in the evolution of most of the minisatellites. In this study a new method to measure MVR variation and to calculate genetic distances using MVR codes is proposed. The method is based on the statistical similarity of MVR patterns and considers the complete variability of the minisatellite, enabling meaningful comparisons of closely related populations. As an example, the method has been applied to analyze variation in MSY1 (DYF155S1) in five sets of data from European and North African populations. Am. J. Hum. Biol. 14:421,428, 2002. [source] THE MUTATION MATRIX AND THE EVOLUTION OF EVOLVABILITYEVOLUTION, Issue 4 2007Adam G. Jones Evolvability is a key characteristic of any evolving system, and the concept of evolvability serves as a unifying theme in a wide range of disciplines related to evolutionary theory. The field of quantitative genetics provides a framework for the exploration of evolvability with the promise to produce insights of global importance. With respect to the quantitative genetics of biological systems, the parameters most relevant to evolvability are the G -matrix, which describes the standing additive genetic variances and covariances for a suite of traits, and the M -matrix, which describes the effects of new mutations on genetic variances and covariances. A population's immediate response to selection is governed by the G -matrix. However, evolvability is also concerned with the ability of mutational processes to produce adaptive variants, and consequently the M -matrix is a crucial quantitative genetic parameter. Here, we explore the evolution of evolvability by using analytical theory and simulation-based models to examine the evolution of the mutational correlation, r,, the key parameter determining the nature of genetic constraints imposed by M. The model uses a diploid, sexually reproducing population of finite size experiencing stabilizing selection on a two-trait phenotype. We assume that the mutational correlation is a third quantitative trait determined by multiple additive loci. An individual's value of the mutational correlation trait determines the correlation between pleiotropic effects of new alleles when they arise in that individual. Our results show that the mutational correlation, despite the fact that it is not involved directly in the specification of an individual's fitness, does evolve in response to selection on the bivariate phenotype. The mutational variance exhibits a weak tendency to evolve to produce alignment of the M -matrix with the adaptive landscape, but is prone to erratic fluctuations as a consequence of genetic drift. The interpretation of this result is that the evolvability of the population is capable of a response to selection, and whether this response results in an increase or decrease in evolvability depends on the way in which the bivariate phenotypic optimum is expected to move. Interestingly, both analytical and simulation results show that the mutational correlation experiences disruptive selection, with local fitness maxima at ,1 and +1. Genetic drift counteracts the tendency for the mutational correlation to persist at these extreme values, however. Our results also show that an evolving M -matrix tends to increase stability of the G -matrix under most circumstances. Previous studies of G -matrix stability, which assume nonevolving M -matrices, consequently may overestimate the level of instability of G relative to what might be expected in natural systems. Overall, our results indicate that evolvability can evolve in natural systems in a way that tends to result in alignment of the G -matrix, the M -matrix, and the adaptive landscape, and that such evolution tends to stabilize the G -matrix over evolutionary time. [source] Mutations in the factor IX gene (F9) during the past 150 years have relative rates similar to ancient mutationsHUMAN MUTATION, Issue 1 2002Jinong Feng Abstract Pollutants and dietary mutagens have been associated with somatic mutation and cancer, but the extent of their influence on germline mutation is not clear. Since deleterious germline mutations can be transmitted for thousands of years, any influence on germline mutation from the vast increase in man-made chemicals of the past 150 years would be an important public health issue. Observed disease causing mutations in the X-linked factor IX gene (F9) of hemophilia B patients originated predominantly in the past 150 years, since the half-life of these mutations in human populations had been about two generations before effective treatment became available about a generation ago. Recent changes in germline mutational processes may be detected by comparison of the observed hemophilia B causing mutation pattern in F9 with the pattern of neutral polymorphisms which occurred over a much longer period of time. By scanning a total of 1.5 megabases of deep intronic regions of F9 in the genomic DNA from 84 individuals, 42 neutral polymorphisms were found in 23 haplotypes that differed by at least 11 mutations from the ancestral primate haplotype. By sequencing F9 in seven non-human primates, 39 of these polymorphisms were characterized as ancient mutations relative to a unanimous ancestral primate allele. This ancient mutation pattern was compared to the recent pattern of hemophilia B causing mutations. Remarkably, no significant difference was found (P=0.5), suggesting that the vast increase in man-made chemicals during the past 150 years has not had a major impact on the pattern of human germline mutation. This result is consistent with the hypothesis that endogenous processes dominate germline mutation. Hum Mutat 19:49,57, 2002. © 2001 Wiley-Liss, Inc. [source] Invariability of central metabolic flux distribution in Shewanella oneidensis MR-1 under environmental or genetic perturbationsBIOTECHNOLOGY PROGRESS, Issue 5 2009Yinjie J. Tang Abstract An environmentally important bacterium with versatile respiration, Shewanella oneidensis MR-1, displayed significantly different growth rates under three culture conditions: minimal medium (doubling time ,3 h), salt stressed minimal medium (doubling time ,6 h), and minimal medium with amino acid supplementation (doubling time ,1.5 h). 13C-based metabolic flux analysis indicated that fluxes of central metabolic reactions remained relatively constant under the three growth conditions, which is in stark contrast to the reported significant changes in the transcript and metabolite profiles under various growth conditions. Furthermore, 10 transposon mutants of S. oneidensis MR-1 were randomly chosen from a transposon library and their flux distributions through central metabolic pathways were revealed to be identical, even though such mutational processes altered the secondary metabolism, for example, glycine and C1 (5,10-Me-THF) metabolism. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] |