Mutational Hotspots (mutational + hotspot)

Distribution by Scientific Domains


Selected Abstracts


Revisiting MSUD in Portuguese Gypsies: Evidence for a Founder Mutation and for a Mutational Hotspot within the BCKDHA Gene

ANNALS OF HUMAN GENETICS, Issue 3 2009
Sofia Quental
Summary Maple syrup urine disease (MSUD) is a rare autosomal recessive disorder of branched-chain amino acid metabolism. In the context of the wide mutational spectrum known for this disease, a few common mutations have been described in populations where founder effects played a major role in modeling diversities. In Portugal, for instance, a high proportion of patients are of Gypsy origin and all share the same mutation (c.117delC-,; p.R40GfsX23), causing the neonatal severe form of MSUD. In this study, we used four microsatellite markers closely flanking the BCKDHA gene (E1, protein) to demonstrate that c.117delC-, is a founder mutation responsible for the high incidence of the disorder among Portuguese Gypsies. These results are of medical relevance since carrier tests and prenatal diagnosis can be offered to families at risk, particularly because the carrier frequency of c.117delC-, was estimated at 1.4% among the healthy Portuguese Gypsies from the South of the country. Finally we present evidence that the genomic region of the BCKDHA gene where c.117delC-, is located is likely a mutational hotspot, since recurrence of c.117delC-, was observed in two distinct population groups. [source]


Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database,,

HUMAN MUTATION, Issue 6 2007
Audrey Petitjean
Abstract The tumor suppressor gene TP53 is frequently mutated in human cancers. More than 75% of all mutations are missense substitutions that have been extensively analyzed in various yeast and human cell assays. The International Agency for Research on Cancer (IARC) TP53 database (www-p53.iarc.fr) compiles all genetic variations that have been reported in TP53. Here, we present recent database developments that include new annotations on the functional properties of mutant proteins, and we perform a systematic analysis of the database to determine the functional properties that contribute to the occurrence of mutational "hotspots" in different cancer types and to the phenotype of tumors. This analysis showed that loss of transactivation capacity is a key factor for the selection of missense mutations, and that difference in mutation frequencies is closely related to nucleotide substitution rates along TP53 coding sequence. An interesting new finding is that in patients with an inherited missense mutation, the age at onset of tumors was related to the functional severity of the mutation, mutations with total loss of transactivation activity being associated with earlier cancer onset compared to mutations that retain partial transactivation capacity. Furthermore, 80% of the most common mutants show a capacity to exert dominant-negative effect (DNE) over wild-type p53, compared to only 45% of the less frequent mutants studied, suggesting that DNE may play a role in shaping mutation patterns. These results provide new insights into the factors that shape mutation patterns and influence mutation phenotype, which may have clinical interest. Hum Mutat 28(6), 622,629, 2007. Published 2007 Wiley-Liss, Inc. [source]


Ten novel mutations in the human neurofibromatosis type 1 (NF1) gene in Italian patients

HUMAN MUTATION, Issue 1 2002
Paola Origone
Abstract The entire NF1 coding region was analyzed for mutations in a panel of 108 unrelated Italian NF1 patients. Using PTT, SSCP, and DNA sequencing, we found 10 mutations which have never been reported before. Clinical diagnosis of NF1 was established according to the NIH consensus criteria in 100 individuals, while 8 were young children with only multiple cafè-au-lait spots. We detected 46 truncated fragments, and 24 of them were fully characterized by SSCP and direct sequencing. Of the 24, 14 were known mutations (R304X, R681X, Q682X, R1306X, R1362X, R1513X, R1748X, Q1794X, R1947X, Y2264X, R2237X, 2674delA, 6789delTTAC, 2027insC). The other 10 mutations represent novel changes that contribute to the germline mutational spectrum of the NF1 gene (K810X, Q2595X, 6772delT, 7190delCT, 7331delA, 1021insTT, 3921insT, 4106insTA, 7149insC, 2033insCG / 2034delA). PTT in a large number of Italian NF1 patients supports the usefulness of this method for characterization of mutations in disorders where the responsible gene is very large and the disease-causing mutations often create a stop codon. In agreement with previous reports, no mutational hotspots within the NF1 gene were detected. © 2002 Wiley-Liss, Inc. [source]


Use of real-time gene-specific polymerase chain reaction to measure RNA expression of three family members of rat cytochrome P450 4A

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2001
Kimberly B. Bleicher
Abstract Exposure of rats to peroxisome proliferators induces members of the cytochrome P450 4A (CYP4A) family. In rats, the CYP4A family consists of four related genes, CYP4A1, CYP4A2, CYP4A3, and CYP4A8. We are specifically interested in examining CYP4A1, CYP4A2, and CYP4A3, each of which is expressed in a tissue-dependent and sex-dependent manner. While CYP4A1 is sufficiently different from the other two members to enable relatively easy specific quantitation, the close similarity between CYP4A2 and CYP4A3 makes quantitative discrimination difficult. We have combined a fluorescent real-time PCR assay (TaqMan®) with the sequence-specific mismatch amplification mutation assay (MAMA) to allow us to carry out specific quantitation of all three members of this family. The assay is designed such that a single fluorescent TaqMan® probe binds to all three gene products, while specificity is conferred by sequence-specific primers. This specific MAMA technique takes advantage of the ability of Taq polymerase to distinguish between the two cDNAs based on mismatches at the 3, end of a PCR primer. In the 84-base PCR product used for this assay, there is only a single-base difference between CYP4A2 and CYP4A3. Despite this similarity, there is at least a 1000-fold discrimination between the two sequences, using CYP4A2 or CYP4A3 specific standards. Analysis of rat liver RNA from both sexes demonstrates that this discrimination is also achieved in complex RNA mixtures. This technique should be broadly applicable to other areas of research such as allelic discrimination, detecting mutational hotspots in tumors, and discrimination among closely related members of other gene families. © 2001 John Wiley & Sons, Inc. J Biochem Mol Toxicol 15:133,142, 2001 [source]