Mutation Type (mutation + type)

Distribution by Scientific Domains


Selected Abstracts


Characterization of mutations in ATP8B1 associated with hereditary cholestasis

HEPATOLOGY, Issue 1 2004
Leo W. J. Klomp
Progressive familial intrahepatic cholestasis (PFIC) and benign recurrent intrahepatic cholestasis (BRIC) are clinically distinct hereditary disorders. PFIC patients suffer from chronic cholestasis and develop liver fibrosis. BRIC patients experience intermittent attacks of cholestasis that resolve spontaneously. Mutations in ATP8B1 (previously FIC1) may result in PFIC or BRIC. We report the genomic organization of ATP8B1 and mutation analyses of 180 families with PFIC or BRIC that identified 54 distinct disease mutations, including 10 mutations predicted to disrupt splicing, 6 nonsense mutations, 11 small insertion or deletion mutations predicted to induce frameshifts, 1 large genomic deletion, 2 small inframe deletions, and 24 missense mutations. Most mutations are rare, occurring in 1,3 families, or are limited to specific populations. Many patients are compound heterozygous for 2 mutations. Mutation type or location correlates overall with clinical severity: missense mutations are more common in BRIC (58% vs. 38% in PFIC), while nonsense, frameshifting, and large deletion mutations are more common in PFIC (41% vs. 16% in BRIC). Some mutations, however, lead to a wide range of phenotypes, from PFIC to BRIC or even no clinical disease. ATP8B1 mutations were detected in 30% and 41%, respectively, of the PFIC and BRIC patients screened. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html) and at www.atp8b1-primers.nl (HEPATOLOGY 2004;40:27,38.) [source]


Prevalence of BRCA1 genomic rearrangements in a large cohort of Italian breast and breast/ovarian cancer families without detectable BRCA1 and BRCA2 point mutations

GENES, CHROMOSOMES AND CANCER, Issue 9 2006
Simona Agata
The presence of genomic rearrangements of the BRCA1 gene in breast and/or ovarian cancer families has been intensively investigated in patients from various countries over the last years. A number of different rearrangements have been reported by several studies that clearly document the involvement of this mutation type in genetic predisposition to breast and ovarian cancer. Population-specific studies are now needed to evaluate the prevalence of genomic rearrangements before deciding whether to include ad hoc screening procedures into standard diagnostic mutation detection approaches. Indeed, the vast majority of the studies have been performed on small, highly selected, sample sets because of the limitations imposed by the laborious technical approaches. Moreover, prevalence figures are likely to differ across different countries according to the ethnic origin of each specific population. Here we analyze a large cohort of 653 Italian probands, negative for BRCA1 and BRCA2 point mutations, gathered from four National Institutions. We report the identification of BRCA1 genomic rearrangements in 12 independent families. Noteworthy, half of the probands carry mutations that recur in more than one Italian family. Considering the whole spectrum of Italian BRCA1 gene rearrangements identified thus far in consecutive patients, we estimate that alterations of this type account for 19% (95% CI: 0.11 < 0.19 < 0.28) of the BRCA1 mutation positive families. We conclude that the search for major genomic rearrangements is essential for an accurate and comprehensive BRCA1 mutation detection strategy in Italy. © 2006 Wiley-Liss, Inc. [source]


Genotype,phenotype correlations in hereditary familial retinoblastoma,

HUMAN MUTATION, Issue 3 2007
Melissa Taylor
Abstract We studied 50 unrelated pedigrees with a family history of retinoblastoma (Rb) (165 carriers of a RB1 mutation) to delineate the spectrum of RB1 germline mutations in familial Rb and to identify genotype,phenotype correlations as well as putative modifiers. Patients were followed at Institut Curie and they were examined by an ophthalmologist, a pediatrician, and a geneticist. All cases of familial Rb were determined via genetic counseling. Clinical features included disease status, laterality, age at diagnosis, mutation type, follow-up, and disease,eye ratio (DER). To eliminate mosaic cases, first-generation carriers displaying low-penetrance (LP) Rb were excluded from the analysis. Complete penetrance was the rule for nonsense and frameshift mutations (25 families) and high penetrance was observed for large rearrangements (eight families). Promoter (two families) and missense (two families) mutations displayed heterogeneous phenotypes and LP. Variable penetrance was observed for splice abnormalities (13 families) and was explained by in/out of frame mutations or respect of functional domains. Surprisingly, two families with the LP g.45867G>T/IVS6+1G>T mutation presented data that conflicted with the data reported in previous publications, as unaffected carriers had paternally inherited mutant alleles. Moreover, RNA analyses suggested that the lack of penetrance in unaffected carriers could be explained by an increase in expression levels of the wild-type allele. This observation prompted us to define a new class "3" of LP alleles. We believe this is the first large-scale study of familial Rb with a high level of homogeneity in the clinical and genetic analysis of patients and their relatives, thereby allowing for reliable intrafamilial genotype,phenotype correlations. Our analysis suggests in some cases the influence of modifier factors probably involved in mRNA level regulation and/or pRB pathway regulation. Hum Mutat 28(3), 284,293, 2007. © 2006 Wiley-Liss, Inc. [source]


Mutational spectrum of the NF2 gene: a meta-analysis of 12 years of research and diagnostic laboratory findings,,

HUMAN MUTATION, Issue 1 2007
Iris Ahronowitz
Abstract The NF2 tumor suppressor gene on chromosome 22 is a member of the protein 4.1 family of cytoskeletal elements. A number of single- and multiple-tumor phenotypes have been linked to alterations of NF2 since its characterization in 1993. We present a meta-analysis of 967 constitutional and somatic NF2 alterations from 93 published reports, along with 59 additional unpublished events identified in our laboratory and 115 alterations identified in clinical samples submitted to the Massachusetts General Hospital (MGH) Neurogenetics DNA Diagnostic Laboratory. In total, these sources defined 1,070 small genetic changes detected primarily by exon scanning, 42 intragenic changes of one whole exon or larger, and 29 whole gene deletions and gross chromosomal rearrangements. Constitutional single-exon events (N=422) were significantly more likely to be nonsense or splice site changes than somatic events (N=533), which favored frameshift changes (,2 test; P<0.001). Somatic events also differed markedly between tumors of different pathology, most significantly in the tendency of somatic events in meningiomas to lie within the 5, FERM domain of the transcript (Fisher's exact test; P<0.01 in comparison to schwannomas) with a complete absence of mutations in exons 14 and 15. There was no statistically significant difference in mutation type or exon distribution between published constitutional events and those found by the clinical laboratory. Less than 10% of all published and unpublished small alterations are nontruncating (N=63) and these changes are clustered in exons 2 and 3, suggesting that this region may be especially crucial to tumor suppressor activity in the protein. Hum Mutat 28(1), 1,12, 2007. Published 2006 Wiley-Liss, Inc. [source]


PEX1 mutations in the Zellweger spectrum of the peroxisome biogenesis disorders,

HUMAN MUTATION, Issue 3 2005
Denis I. Crane
Abstract Diseases of the Zellweger spectrum represent a major subgroup of the peroxisome biogenesis disorders, a group of autosomal-recessive diseases that are characterized by widespread tissue pathology, including neurodegeneration. The Zellweger spectrum represents a clinical continuum, with Zellweger syndrome (ZS) having the most severe phenotype, and neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD) having progressively milder phenotypes. Mutations in the PEX1 gene, which encodes a 143-kDa AAA ATPase protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The PEX1 mutations identified to date comprise insertions, deletions, nonsense, missense, and splice site mutations. Mutations that produce premature truncation codons (PTCs) are distributed throughout the PEX1 gene, whereas the majority of missense mutations segregate with the two essential AAA domains of the PEX1 protein. Severity at the two ends of the Zellweger spectrum correlates broadly with mutation type and impact (i.e., the severe ZS correlates with PTCs on both alleles, and the milder phenotypes correlate with missense mutations), but exceptions to these general correlations exist. This article provides an overview of the currently known PEX1 mutations, and includes, when necessary, revised mutation nomenclature and genotype,phenotype correlations that may be useful for clinical diagnosis. Hum Mutat 26(3), 167,175, 2005. © 2005 Wiley-Liss, Inc. [source]


Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype,phenotype relationship

HUMAN MUTATION, Issue 3 2001
Niels Gregersen
Abstract Mutation analysis of metabolic disorders, such as the fatty acid oxidation defects, offers an additional, and often superior, tool for specific diagnosis compared to traditional enzymatic assays. With the advancement of the structural part of the Human Genome Project and the creation of mutation databases, procedures for convenient and reliable genetic analyses are being developed. The most straightforward application of mutation analysis is to specific diagnoses in suspected patients, particularly in the context of family studies and for prenatal/preimplantation analysis. In addition, from these practical uses emerges the possibility to study genotype,phenotype relationships and investigate the molecular pathogenesis resulting from specific mutations or groups of mutations. In the present review we summarize current knowledge regarding genotype,phenotype relationships in three disorders of mitochondrial fatty acid oxidation: very-long chain acyl-CoA dehydrogenase (VLCAD, also ACADVL), medium-chain acyl-CoA dehydrogenase (MCAD, also ACADM), and short-chain acyl-CoA dehydrogenase (SCAD, also ACADS) deficiencies. On the basis of this knowledge we discuss current understanding of the structural implications of mutation type, as well as the modulating effect of the mitochondrial protein quality control systems, composed of molecular chaperones and intracellular proteases. We propose that the unraveling of the genetic and cellular determinants of the modulating effects of protein quality control systems may help to assess the balance between genetic and environmental factors in the clinical expression of a given mutation. The realization that the effect of the monogene, such as disease-causing mutations in the VLCAD, MCAD, and SCAD genes, may be modified by variations in other genes presages the need for profile analyses of additional genetic variations. The rapid development of mutation detection systems, such as the chip technologies, makes such profile analyses feasible. However, it remains to be seen to what extent mutation analysis will be used for diagnosis of fatty acid oxidation defects and other metabolic disorders. Hum Mutat 18:169,189, 2001. © 2001 Wiley-Liss, Inc. [source]


Simultaneous analysis of the behavioural phenotype, physical factors, and parenting stress in people with Cornelia de Lange syndrome

JOURNAL OF INTELLECTUAL DISABILITY RESEARCH, Issue 7 2009
J. Wulffaert
Abstract Background Studies into the phenotype of rare genetic syndromes largely rely on bivariate analysis. The aim of this study was to describe the phenotype of Cornelia de Lange syndrome (CdLS) in depth by examining a large number of variables with varying measurement levels. Virtually the only suitable multivariate technique for this is categorical principal component analysis. The characteristics of the CdLS phenotype measured were also analysed in relation to parenting stress. Method Data for 37 children and adults with CdLS were collected. The type of gene mutation and relevant medical characteristics were measured. Information on adaptive functioning, behavioural problems, the presence of the autistic disorder and parenting stress were obtained through questionnaires and semi-structured interviews with the parents. Chronological age and gender were also included in the analysis. Results All characteristics measured, except gender, were highly interrelated and there was much variability in the CdLS phenotype. Parents perceived more stress when their children were older, were lower functioning, had more behavioural problems, and if the autistic disorder was present. A new perspective was acquired on the relation between the gene mutation type and medical and behavioural characteristics. In contrast with earlier research the severity of medical characteristics did not appear a strong prognostic factor for the level of development. Conclusion Categorical principal component analysis proved particularly valuable for the description of this small group of participants given the large number of variables with different measurement levels. The success of the technique in the present study suggests that a similar approach to the characterisation of other rare genetic syndromes could prove extremely valuable. Given the high variability and interrelatedness of characteristics in CdLS persons, parents should be informed about this differentiated perspective. [source]


Hepatitis B virus X mutations occurring naturally associated with clinical severity of liver disease among Korean patients with chronic genotype C infection,

JOURNAL OF MEDICAL VIROLOGY, Issue 8 2008
Hyun-Ju Kim
Abstract Few reports have detailed mutation frequencies and mutation patterns in the entire X region according to clinical status. The aims of this study were to elucidate the relationships between mutation patterns and their frequencies in the X region and clinical status in a Korean cohort and determine specific X mutation types, related closely with liver disease progression. All X mutations were determined by direct sequencing in 184 patients with different clinical features. Mutation rates in the X region in patients with more severe liver disease, hepatocellular carcinoma (HCC) (3.6%) or liver cirrhosis (4%) were always significantly higher than in patients with corresponding less severe forms, chronic hepatitis (2.9%) or asymptomatic carriers (2.1%), but no significant difference in mutation rates was found in terms of HBeAg serostatus. All five mutation types (V5M/L, P38S, H94Y, I127T/N, and K130M and V131I) affecting the six codons were found to be related significantly to clinical severity. Among these, two mutation types (V5M/L and K130M and V131I) were observed more frequently in HBeAg negative patients than in HBeAg positive patients. In conclusion, the results suggest that an accumulation of mutations in the X region contributes to disease progression in chronic patients, at least Korean patients with genotype C. Specific mutation types appears to be related more to severe liver diseases such as HCC or liver cirrhosis. In particular, a novel mutation type (V5M/L) discovered firstly during the present study was found to be associated significantly with HCC. J. Med. Virol. 80:1337,1343, 2008. © 2008 Wiley-Liss, Inc. [source]


Phenotypic variability in myotonia congenita

MUSCLE AND NERVE, Issue 1 2005
Eskild Colding-Jørgensen MDArticle first published online: 22 MAR 200
Abstract Myotonia congenita is a hereditary chloride channel disorder characterized by delayed relaxation of skeletal muscle (myotonia). It is caused by mutations in the skeletal muscle chloride channel gene CLCN1 on chromosome 7. The phenotypic spectrum of myotonia congenita ranges from mild myotonia disclosed only by clinical examination to severe and disabling myotonia with transient weakness and myopathy. The most severe phenotypes are seen in patients with two mutated alleles. Heterozygotes are often asymptomatic but for some mutations heterozygosity is sufficient to cause pronounced myotonia, although without weakness and myopathy. Thus, the phenotype depends on the mutation type to some extent, but this does not explain the fact that severity varies greatly between heterozygous family members and may even vary with time in the individual patient. In this review, existing knowledge about phenotypic variability is summarized, and the possible contributing factors are discussed. Muscle Nerve, 2005 [source]


Differentially expressed proteins in gastrointestinal stromal tumors with KIT and PDGFRA mutations

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 4 2006
Hyun Ju Kang
Abstract Most gastrointestinal stromal tumors (GIST) have activating mutations in either KIT or PDGFRA. However, a small subset of GIST lacks either mutation. To investigate the molecular characteristics of GIST according to mutation type, protein expression profiles in 12 GIST (2 cases with PDGFRA mutations, 8 cases with KIT mutations and 2 cases lacking either mutation) were analyzed using 2-DE and MALDI-TOF-MS. Comparative analysis of the respective spot patterns using 2-DE showed that 15 proteins were differently expressed according to the mutation status. Expression levels of septin and heat shock protein (HSP) 27 were increased in GIST with KIT mutations and annexin V was overexpressed in GIST lacking either mutation. Among the 15 proteins, overexpression of 5 proteins [annexin V, high mobility group protein 1 (HMGB1), C13orf2, glutamate dehydrogenase 1 and fibrinogen beta chain] and decreased expression of RoXaN correlated with a higher tumor grade. These findings suggest that differential protein expression can be used as a diagnostic biomarker. Moreover, it may play a role in the development and progression of GIST according to activating mutation type, as these proteins have been shown to be involved in tumor metastasis, apoptosis and immune response. [source]


Tyrosine kinase mutations in gastrointestinal stromal tumors in a nation-wide study in Iceland

APMIS, Issue 9 2010
GEIR TRYGGVASON
Tryggvason G, Hilmarsdottir B, Gunnarsson GH, Jónsson JJ, Jónasson JG, Magnússon MK. Tyrosine kinase mutations in gastrointestinal stromal tumors in a nation-wide study in Iceland. APMIS 2010; 118: 648,56. Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. It is characterized by activating mutations in the tyrosine kinase genes c-kit or PDGFRA. This study examined the mutation rate and type in a population-based material. All gastrointestinal mesenchymal tumors over the years 1990,2004 were evaluated and GIST tumors identified using immunohistochemistry (c-kit) and conventional pathologic parameters. Paraffin sections from all tumors were subjected to mutation analysis on exons 9, 11, 13 and 17 of the c-kit gene and exons 12 and 18 of the PDGFRA gene. To screen for mutations, we used a highly sensitive conformation-sensitive gel electrophoresis (CSGE) and to define the mutated alleles, we employed direct automated DNA sequencing. All c-kit-positive gastrointestinal mesenchymal tumors were entered into the study. Fifty-six tumors from 55 patients were analyzed. Mutations were found in 52 tumors representing a 92.9% mutational rate. Most of the mutations were found in c-kit exon 11 (76.8%), followed by c-kit exon 9 (10.7%). PDGFRA mutations were only found in three tumors. No correlation of mutation type with biologic behavior was found. This population-based study, using a sensitive CSGE method, identifies mutations in the great majority of patients with GIST. [source]


Hepatitis B virus X mutations occurring naturally associated with clinical severity of liver disease among Korean patients with chronic genotype C infection,

JOURNAL OF MEDICAL VIROLOGY, Issue 8 2008
Hyun-Ju Kim
Abstract Few reports have detailed mutation frequencies and mutation patterns in the entire X region according to clinical status. The aims of this study were to elucidate the relationships between mutation patterns and their frequencies in the X region and clinical status in a Korean cohort and determine specific X mutation types, related closely with liver disease progression. All X mutations were determined by direct sequencing in 184 patients with different clinical features. Mutation rates in the X region in patients with more severe liver disease, hepatocellular carcinoma (HCC) (3.6%) or liver cirrhosis (4%) were always significantly higher than in patients with corresponding less severe forms, chronic hepatitis (2.9%) or asymptomatic carriers (2.1%), but no significant difference in mutation rates was found in terms of HBeAg serostatus. All five mutation types (V5M/L, P38S, H94Y, I127T/N, and K130M and V131I) affecting the six codons were found to be related significantly to clinical severity. Among these, two mutation types (V5M/L and K130M and V131I) were observed more frequently in HBeAg negative patients than in HBeAg positive patients. In conclusion, the results suggest that an accumulation of mutations in the X region contributes to disease progression in chronic patients, at least Korean patients with genotype C. Specific mutation types appears to be related more to severe liver diseases such as HCC or liver cirrhosis. In particular, a novel mutation type (V5M/L) discovered firstly during the present study was found to be associated significantly with HCC. J. Med. Virol. 80:1337,1343, 2008. © 2008 Wiley-Liss, Inc. [source]


Denaturing capillary electrophoresis for automated detection of L858R mutation in exon 21 of the epidermal growth factor receptor gene in prediction of the outcome of lung cancer therapy

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 15 2010
Lucie Benesova
Abstract The presence of activating mutations within the tyrosine kinase domain of the epidermal growth factor receptor gene has been attributed to a positive response to biological therapy of lung cancer by small-molecular tyrosine kinase inhibitors, gefitinib and erlotinib. Among the two most significant mutation types are deletions in exon 19 and a single point substitution in exon 21 (termed L858R). The exon 19 deletions can readily be examined by fragment analysis, due to the characteristic length difference between the normal and mutated PCR product. Analysis of the L858R point mutation, however, presents a greater challenge. The current paper is aimed at developing a sensitive, yet simple, low-cost mutation detection assay directed at the L858R mutation using a method based on CE of heteroduplexes under partial denaturing conditions. We perform optimization of separation conditions on different commercial instruments including ones equipped with 8, 16 and 96 capillaries. We present normalized migration reproducibility in the range from 1 (8 and 16) to 5% (96) RSD. A reliable distinction of the R836R silent polymorphism from a potential presence of the L858R mutation is also demonstrated. In its implementation, the presented assay is just another application running on a conventional CE platform without the need of dedicated instrumentation. [source]


Entries in the Leiden Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading-frame rule

MUSCLE AND NERVE, Issue 2 2006
Annemieke Aartsma-Rus PhD
Abstract The severe Duchenne and milder Becker muscular dystrophy are both caused by mutations in the DMD gene. This gene codes for dystrophin, a protein important for maintaining the stability of muscle-fiber membranes. In 1988, Monaco and colleagues postulated an explanation for the phenotypic difference between Duchenne and Becker patients in the reading-frame rule: In Duchenne patients, mutations induce a shift in the reading frame leading to prematurely truncated, dysfunctional dystrophins. In Becker patients, in-frame mutations allow the synthesis of internally deleted, but largely functional dystrophins. Currently, over 4700 mutations have been reported in the Leiden DMD mutation database, of which 91% are in agreement with this rule. In this study we provide an update of the mutational variability in the DMD gene, particularly focusing on genotype,phenotype correlations and mutations that appear to be exceptions to the reading-frame rule. Muscle Nerve, 2006 [source]