Mutation Studies (mutation + studies)

Distribution by Scientific Domains


Selected Abstracts


Identification of five novel WASP mutations in Chinese families with Wiskott-Aldrich syndrome

HUMAN MUTATION, Issue 2 2002
Koon-Wing Chan
Abstract The Wiskott-Aldrich Syndrome (WAS) is an X-linked recessive immunodeficiency caused by mutation in the gene encoding WAS protein (WASP). The disease is characterized by eczema, thrombocytopenia and severe immunodeificency and is associated with extensive clinical heterogeneity. Mutation studies indicated that the mutated genotypes are also highly variable. In this study, we performed PCR-direct sequencing analysis of the WAS gene in six unrelated Chinese families. Five novel mutations identified, included two nonsense mutations (506C,T, 1388,T), a small insertion (685-686insCGCA) and two single-base deletions (384delT, 984delC). All of the mutations are predicted to lead to premature translational termination of WASP. © 2002 Wiley-Liss, Inc. [source]


Perplexing Pax: From puzzle to paradigm

DEVELOPMENTAL DYNAMICS, Issue 10 2008
Judith A. Blake
Abstract Pax transcription factors are critical for the development of the central nervous system (CNS) where they have a biphasic role, initially dictating CNS regionalization, while later orchestrating differentiation of specific cell subtypes. While a plethora of expression, misexpression, and mutation studies lend support for this argument and clarify the importance of Pax genes in CNS development, less well understood, and more perplexing, is the continued Pax expression in the adult CNS. In this article we explore the mechanism of action of Pax genes in general, and while being cognizant of existing developmental data, we also draw evidence from (1) adult progenitor cells involved in regeneration and tissue maintenance, (2) specific expression patterns in fully differentiated adult cells, and (3) analysis of direct target genes functioning downstream of Pax proteins. From this, we present a more encompassing theory that Pax genes are key regulators of a cell's measured response to a dynamic environment. Developmental Dynamics 237:2791,2803, 2008. © 2008 Wiley-Liss, Inc. [source]


Pharmacokinetics, dose-range, and mutagenicity studies of methylphenidate hydrochloride in B6C3F1 mice,,

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 8 2008
Mugimane G. Manjanatha
Abstract Methylphenidate hydrochloride (MPH) is one of the most frequently prescribed pediatric drugs for the treatment of attention deficit hyperactivity disorder. In a recent study, increased hepatic adenomas were observed in B6C3F1 mice treated with MPH in their diet. To evaluate the reactive metabolite, ritalinic acid (RA) of MPH and its mode of action in mice, we conducted extensive investigations on the pharmacokinetics (PK) and genotoxicity of the drug in B6C3F1 mice. For the PK study, male B6C3F1 mice were gavaged once with 3 mg/kg body weight (BW) of MPH and groups of mice were sacrificed at various time points (0.25,24 hr) for serum analysis of MPH and RA concentrations. Groups of male B6C3F1 mice were fed diets containing 0, 250, 500, 1,000, 2,000, or 4,000 ppm of MPH for 28 days to determine the appropriate doses for 24-week transgenic mutation studies. Also, the micronucleus frequencies (MN-RETs and MN-NCEs), and the lymphocyte Hprt mutants were determined in peripheral blood and splenic lymphocytes, respectively. Mice fed 4,000 ppm of MPH lost significant BW compared to control mice (P < 0.01). There was a significant increase in the average liver weights whereas kidneys, seminal vesicle, testes, thymus, and urinary bladder weights of mice fed higher doses of MPH were significantly lower than the control group (P , 0.05). There was no significant increase in either the Hprt mutant frequency or the micronucleus frequency in the treated animals. These results indicated that although MPH induced liver hypertrophy in mice, no genotoxicity was observed. Environ. Mol. Mutagen., 2008. Published 2008 Wiley-Liss, Inc. [source]


Assessing human germ-cell mutagenesis in the Postgenome Era: A celebration of the legacy of William Lawson (Bill) Russell,

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2007
Andrew J. Wyrobek
Abstract Birth defects, de novo genetic diseases, and chromosomal abnormality syndromes occur in ,5% of all live births, and affected children suffer from a broad range of lifelong health consequences. Despite the social and medical impact of these defects, and the 8 decades of research in animal systems that have identified numerous germ-cell mutagens, no human germ-cell mutagen has been confirmed to date. There is now a growing consensus that the inability to detect human germ-cell mutagens is due to technological limitations in the detection of random mutations rather than biological differences between animal and human susceptibility. A multidisciplinary workshop responding to this challenge convened at The Jackson Laboratory in Bar Harbor, Maine. The purpose of the workshop was to assess the applicability of an emerging repertoire of genomic technologies to studies of human germ-cell mutagenesis. Workshop participants recommended large-scale human germ-cell mutation studies be conducted using samples from donors with high-dose exposures, such as cancer survivors. Within this high-risk cohort, parents and children could be evaluated for heritable changes in (a) DNA sequence and chromosomal structure, (b) repeat sequences and minisatellites, and (c) global gene expression profiles and pathways. Participants also advocated the establishment of a bio-bank of human tissue samples from donors with well-characterized exposure, including medical and reproductive histories. This mutational resource could support large-scale, multiple-endpoint studies. Additional studies could involve the examination of transgenerational effects associated with changes in imprinting and methylation patterns, nucleotide repeats, and mitochondrial DNA mutations. The further development of animal models and the integration of these with human studies are necessary to provide molecular insights into the mechanisms of germ-cell mutations and to identify prevention strategies. Furthermore, scientific specialty groups should be convened to review and prioritize the evidence for germ-cell mutagenicity from common environmental, occupational, medical, and lifestyle exposures. Workshop attendees agreed on the need for a full-scale assault to address key fundamental questions in human germ-cell environmental mutagenesis. These include, but are not limited to, the following: Do human germ-cell mutagens exist? What are the risks to future generations? Are some parents at higher risk than others for acquiring and transmitting germ-cell mutations? Obtaining answers to these, and other critical questions, will require strong support from relevant funding agencies, in addition to the engagement of scientists outside the fields of genomics and germ-cell mutagenesis. Environ. Mol. Mutagen., 2007. Published 2007 Wiley-Liss, Inc. [source]


The stem cells of small intestinal crypts: where are they?

CELL PROLIFERATION, Issue 6 2009
C. S. Potten
Recently, there has been resurgence of interest in the question of small intestinal stem cells, their precise location and numbers in the crypts. In this article, we attempt to re-assess the data, including historical information often omitted in recent studies on the subject. The conclusion we draw is that the evidence supports the concept that active murine small intestinal stem cells in steady state are few in number and are proliferative. There are two evolving, but divergent views on their location (which may be more related to scope of capability and reversibility than to location) several lineage labelling and stem cell self-renewing studies (based on Lgr5 expression) suggest a location intercalated between the Paneth cells (crypt base columnar cells (CBCCs)), or classical cell kinetic, label-retention and radiobiological evidence plus other recent studies, pointing to a location four cell positions luminally from the base of the crypt The latter is supported by recent lineage labelling of Bmi-1-expressing cells and by studies on expression of Wip-1 phosphatase. The situation in the human small intestine remains unclear, but recent mtDNA mutation studies suggest that the stem cells in humans are also located above the Paneth cell zone. There could be a distinct and as yet undiscovered relationship between these observed traits, with stem cell properties both in cells of the crypt base and those at cell position 4. [source]


DNA sequence analysis for structure/function and mutation studies in Becker muscular dystrophy

CLINICAL GENETICS, Issue 1 2005
SA Hamed
We systematically screened the whole coding region of 18 male muscular dystrophy patients whose clinical, histological and laboratory findings suggest Becker muscular dystrophy (present but abnormal dystrophin). No systematic mutation study of a cohort of patients with dystrophin of normal quality but abnormal quantity has been published. The complete coding sequence of the dystrophin gene (11 kb) of each patient was subjected to an automated sequence analysis by using muscle biopsy RNA; 535 bp of the gene promoter and 5,UTR were likewise sequenced. We identified seven disease-causing mutations (40%). Six were novel, including missense, nonsense, small deletion and splice site mutations. Sixty percent (11/18) of patients with decreased quantities of normal molecular weight dystrophin showed no mutation, but most of them had a family history highly suggestive of X-linked inheritance, suggesting transcription or translational deleterious affection, i.e. outside what was screened. Quantitative multiplex fluorescence polymerase chain studies of mutation-negative patients showed normal levels of dystrophin mRNA. In three patients, there was some reduction of the transcript suggesting a deleterious undetected gene change resulted in the reduction of RNA levels. Our data address important structure/function and genotype/phenotype correlations and it suggests that dystrophin protein studies must be interpreted with caution in deletion-negative male muscular dystrophy patients. [source]