Mutant Derivatives (mutant + derivative)

Distribution by Scientific Domains


Selected Abstracts


Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana

NEW PHYTOLOGIST, Issue 1 2009
Chong Kum Edwin Wong
Summary ,,The Zn/Cd-transporting ATPase, HMA2, has N- and C-terminal domains that can bind Zn ions with high affinity. Mutant derivatives were generated to determine the significance of these domains to HMA2 function in planta. ,,Mutant derivatives, with and without a C-terminal GFP tag, were expressed from the HMA2 promoter in transgenic hma2,hma4, Zn-deficient, plants to test for functionality. ,,A deletion mutant lacking the C-terminal 244 amino acids rescued most of the hma2,hma4 Zn-deficiency phenotypes with the exception of embryo or seed development. Root-to-shoot Cd translocation was fully rescued. The GFP-tagged derivative was partially mis-localized in the root pericycle cells in which it was expressed. Deletion derivatives lacking the C-terminal 121 and 21 amino acids rescued all phenotypes and localized normally. N-terminal domain mutants localized normally but failed to complement the hma2,hma4 phenotypes. ,,These observations suggest that the N-terminal domain of HMA2 is essential for function in planta while the C-terminal domain, although not essential for function, may contain a signal important for the subcellular localization of the protein. [source]


The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid

ENVIRONMENTAL MICROBIOLOGY, Issue 6 2007
José J. Rodríguez-Herva
Summary Pseudomonas putida DOT-T1E is a solvent-tolerant strain able to grow in the presence of > 1% (v/v) toluene in the culture medium. A set of multidrug efflux pumps have been found to play a major role in the tolerance of this bacterium to organic solvents (Rojas et al., J Bacteriol 183: 3967,3973). In the course of studies of the mechanisms underlying solvent tolerance in DOT-T1E, we isolated a spontaneous solvent-sensitive mutant derivative which had lost the genes encoding the TtgGHI efflux pump, the most important extrusion element in quantitative terms. Genomic comparisons between the mutant and its parental strain by microarray analysis revealed that in addition to the ttgVW-ttgGHI gene cluster, another group of genes, highly similar to those found in the Tn4653A and ISPpu12 transposable elements of the TOL plasmid pWW0 from P. putida mt-2, were also absent from this strain. Further analysis demonstrated that strain DOT-T1E harboured a large plasmid (named pGRT1) that was lost from the solvent-sensitive mutant. Mapping analysis revealed that the ttgVW-ttgGHI genes and the Tn4653A -like transposon are borne by the pGRT1 plasmid. Plasmid pGRT1 is highly stable and its frequency of loss is below 10,8 per cell per generation under a variety of growth conditions, including nutritional and physical stresses. The pGRT1 plasmid is self-transmissible, and its acquisition by the toluene-sensitive P. putida KT2440 and Pseudomonas aeruginosa PAO1 increased the recipient's tolerance to toluene up to levels similar to those exhibited by P. putida DOT-T1E. We discuss the importance and potential benefits of this plasmid for the development of bacteria with enhanced solvent tolerance, and its potential impact for bioremediation and whole-cell biotransformations. [source]


CLONING AND SEQUENCING OF THE ,-AMYLASE GENE FROM BACILLUS SUBTILIS US116 STRAIN ENCODING AN ENZYME CLOSELY IDENTICAL TO THAT FROM BACILLUS AMYLOLIQUEFACIENS BUT DISTINCT IN THERMAL STABILITY

JOURNAL OF FOOD BIOCHEMISTRY, Issue 2 2010
EZZEDINE BEN MESSAOUD
ABSTRACT The gene encoding for the ,-amylase AMYUS116 was cloned and sequenced. The amino acid sequence of AMYUS116 exhibited an almost perfect homology with the ,-amylase BACAAM, excluding the residues N205 and N217 of AMYUS116 that were changed to H205 and I217 into BACAAM. Three mutant derivatives from AMYUS116 (N205H, N217I and N205H/N217I) were created by site-directed mutagenesis and their physicochemical and kinetic properties were compared with those of the wild-type enzymes. Therefore, the undertaken amylases mainly generated maltohexaose from starch and had radically the same kinetic parameters and optimum pH and temperature. They, however, were significantly distinct in thermal stability; AMYUS116 was more thermosensible as its half-life time at 80C was 13 min, while those of BACAAM and the double mutant were likewise 38 min. The single-mutant amylases exhibited an identically intermediate thermal stability as their half-life times at 80C were roughly 22 min. PRACTICAL APPLICATIONS Of particular interest to the current search is that the different thermal stability between AMYUS116 and BACAAM can lead to novel findings pertaining to protein stability, which can bring about new strategies for protein engineering. Basically, the comparative study of closely related amylases and the protein engineering of already existing ones are certainly important because they offer opportunities to understand the structure,function relationships of these biocatalysts. [source]


A role for the Escherichia coli H-NS-like protein StpA in OmpF porin expression through modulation of micF RNA stability

MOLECULAR MICROBIOLOGY, Issue 1 2000
Padraig Deighan
When a wild-type strain of Escherichia coli and its stpA, hns and stpA hns mutant derivatives were compared by two-dimensional protein gel electrophoresis, the levels of expression of several proteins were found to vary. One of these was identified as the outer membrane porin protein, OmpF. In the stpA hns double mutant, the level of OmpF was downregulated dramatically, whereas in hns or stpA single mutants, it was affected only slightly. Transcription from the ompF promoter was reduced by 64% in the double mutant; however, the level of ompF mRNA was reduced by 96%. This post-transcriptional expression was found to result from a strong reduction in the half-life of ompF message in the double mutant. The micF antisense RNA was shown to be involved in OmpF regulation by StpA using a strain deleted for micF. Moreover, micF antisense RNA accumulated considerably in an stpA hns background. Transcriptional data from a micF,lacZ fusion and measurements of micF RNA half-life confirmed that this was caused by transcriptional derepression of micF as a result of the hns lesion and increased micF RNA stability due to the absence of StpA (a known RNA chaperone). These data suggest a novel facet to the regulation of OmpF expression, namely destabilization of micF RNA by StpA. [source]


Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3,rep16

THE PLANT JOURNAL, Issue 6 2009
Sabine Kay
Summary The Gram-negative phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) employs a type III secretion system to translocate effector proteins into plant cells where they modulate host signaling pathways to the pathogen's benefit. The effector protein AvrBs3 acts as a eukaryotic transcription factor and induces the expression of plant genes termed UPA (up-regulated by AvrBs3). Here, we describe 11 new UPA genes from bell pepper that are induced by AvrBs3 early after infection with Xcv. Sequence comparisons revealed the presence of a conserved AvrBs3-responsive element, the UPA box, in all UPA gene promoters analyzed. Analyses of UPA box mutant derivatives confirmed its importance for gene induction by AvrBs3. We show that DNA binding and gene activation were strictly correlated. DNase I footprint studies demonstrated that the UPA box corresponds to the center of the AvrBs3-protected DNA region. Type III delivery of AvrBs3 and mutant derivatives showed that some UPA genes are induced by the AvrBs3 deletion derivative AvrBs3,rep16, which lacks four repeats. We show that AvrBs3,rep16 recognizes a mutated UPA box with two nucleotide exchanges in positions that are not essential for binding and activation by AvrBs3. [source]