Mutagen

Distribution by Scientific Domains

Kinds of Mutagen

  • food mutagen


  • Selected Abstracts


    Method for generation of human hyperdiversified antibody fragment library

    BIOTECHNOLOGY JOURNAL, Issue 1 2007
    Philippe Mondon
    Abstract The selection of antibody fragments from libraries using in vitro screening technologies has proven to be a very good alternative to the classical hybridoma technology, and has overcome the laborious process of antibody humanization. However, the complexity of the library is critical in the probability of being able to directly isolate a high affinity antibody specific to a target. We report a method to make hyperdiversified antibody fragment libraries, based on human immunoglobulin variable genes mimicking the somatic hypermutation process. This mutagenesis technology, MutaGenÔ, was used for the first time on the entire variable domain (frameworks and CDRs) of large repertoires of human variable antibody domains. Our MutaGenÔ process uses low-fidelity human polymerases, known as mutases, suggested to be involved in the somatic hypermutation process of immunoglobulin genes. Depending on the mutases used, we generated complementary mutation patterns with randomly distributed mutations. The libraries were generated with an average of 1.8 mutations per 100 amino acids. The hyperdiversified antibody fragment libraries constructed with our process should enable the selection of antibody fragments specific to virtually any target. [source]


    Expression of caspase and apoptotic signal pathway induced by sulfur dioxide

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2010
    Juli Bai
    Abstract Sulfur dioxide (SO2) is a common air pollutant that is released in low concentrations into the atmosphere and in higher concentrations in some work places. In the present study, male Wistar rats were housed in exposure chambers and treated with 14.00 ± 1.01, 28.00 ± 1.77, and 56.00 ± 3.44 mg/m3 SO2 for 7 days (6 hr/day), while control rats were exposed to filtered air under the same conditions. The mRNA and protein levels of caspase-3, caspase-8, and caspase-9 were analyzed using a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay and an immunohistochemistry method. Activities of caspases were detected using colorimetric and fluorescent assays. Chromatin degradation and cell morphological changes were investigated by TUNEL assay and H&E staining in livers and lungs, respectively. The results showed that mRNA levels, protein levels and activities of caspase-3, caspase-8, and caspase-9 were increased in a dose-dependent manner in livers and lungs of rats after SO2 inhalation. In addition, livers were infiltrated with lymphocytes, congestion and inflammation occurred in lungs, and eosinophil cells and apoptotic cells increased in both livers and lungs after SO2 inhalation. These results suggest that SO2 exposure increases the expression and activity of both initiator and and effector caspases, and may induce apoptosis in liver and lung of rats through both death receptor and mitochondrial pathways. Environ. Mol. Mutagen. 2010. © 2009 Wiley-Liss, Inc. [source]


    DNA adduct kinetics in reproductive tissues of DNA repair proficient and deficient male mice after oral exposure to benzo(a)pyrene

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2010
    Nicole Verhofstad
    Abstract Benzo(a)pyrene (B[a]P) can induce somatic mutations, whereas its potential to induce germ cell mutations is unclear. There is circumstantial evidence that paternal exposure to B[a]P can result in germ cell mutations. Since DNA adducts are thought to be a prerequisite for B[a]P induced mutations, we studied DNA adduct kinetics by 32P-postlabeling in sperm, testes and lung tissues of male mice after a single exposure to B[a]P (13 mg/kg bw, by gavage). To investigate DNA adduct formation at different stages of spermatogenesis, mice were sacrificed at Day 1, 4, 7, 10, 14, 21, 32, and 42 after exposure. In addition, DNA repair deficient (Xpc,/,) mice were used to study the contribution of nucleotide excision repair in DNA damage removal. DNA adducts were detectable with highest levels in lung followed by sperm and testis. Maximum adduct levels in the lung and testis were observed at Day 1 after exposure, while adduct levels in sperm reached maximum levels at ,1 week after exposure. Lung tissue and testis of Xpc,/, mice contained significantly higher DNA adduct levels compared to wild type (Wt) mice over the entire 42 day observation period (P < 0.05). Differences in adduct half-life between Xpc,/, and Wt mice were only observed in testis. In sperm, DNA adduct levels were significantly higher in Xpc,/, mice than in Wt mice only at Day 42 after exposure (P = 0.01). These results indicate that spermatogonia and testes are susceptible for the induction of DNA damage and rely on nucleotide excision repair for maintaining their genetic integrity. Environ. Mol. Mutagen. 2010. © 2009 Wiley-Liss, Inc. [source]


    Folate deficiency in human peripheral blood lymphocytes induces chromosome 8 aneuploidy but this effect is not modified by riboflavin

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2010
    Juan Ni
    Abstract Chromosome 8 aneuploidy is a common event in certain cancers but whether folate (F) deficiency induces chromosome 8 aneuploidy is not known. Furthermore the impact of riboflavin (R) deficiency, which may alter activity of a key enzyme in folate metabolism, on these events is unknown. Therefore, the aim of our research was to test the following hypotheses: (a) F deficiency induces chromosome 8 aneuploidy; (b) chromosome 8 aneuploidy is affected by F deficiency to a similar degree as chromosome 17 and (c) R deficiency aggravates the risk of aneuploidy caused by F deficiency. These hypotheses were tested in long-term cultures of lymphocytes from twenty female healthy volunteers (aged 30,48 years). Lymphocytes were cultured in each of the four possible combinations of low (L) and high (H) F (LF, 20 nmol/L, HF 200 nmol/L, respectively) and L and H R (LR 1 nmol/L, HR 500 nmol/L, respectively) media (LFLR, LFHR, HFLR, HFHR) for 9 days. Chromosomes 8 and 17 aneuploidy was measured in mononucleated (MONO) and cytokinesis-blocked binucleated (BN) cells using dual-color fluorescence in situ hybridization (FISH) with fluorescent centromeric probes specific for chromosomes 8 and 17. Culture in LF media (LFLR or LFHR) induced significant and similar increases in frequencies of aneuploidy of chromosomes 8 and 17 (P < 0.001) relative to culture in HF media (HFLR or HFHR). There was no significant effect of R concentration on aneuploidy frequency for either chromosome. We conclude that F deficiency is a possible cause of chromosome 8 aneuploidy. Environ. Mol. Mutagen. 2010. © 2009 Wiley-Liss, Inc. [source]


    No increases in biomarkers of genetic damage or pathological changes in heart and brain tissues in male rats administered methylphenidate hydrochloride (Ritalin) for 28 days,,

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2010
    Kristine L. Witt
    Abstract Following a 2005 report of chromosomal damage in children with attention deficit/hyperactivity disorder (ADHD) who were treated with the commonly prescribed medication methylphenidate (MPH), numerous studies have been conducted to clarify the risk for MPH-induced genetic damage. Although most of these studies reported no changes in genetic damage endpoints associated with exposure to MPH, one recent study (Andreazza et al. [2007]: Prog Neuropsychopharmacol Biol Psychiatry 31:1282,1288) reported an increase in DNA damage detected by the Comet assay in blood and brain cells of Wistar rats treated by intraperitoneal injection with 1, 2, or 10 mg/kg MPH; no increases in micronucleated lymphocyte frequencies were observed in these rats. To clarify these findings, we treated adult male Wistar Han rats with 0, 2, 10, or 25 mg/kg MPH by gavage once daily for 28 consecutive days and measured micronucleated reticulocyte (MN-RET) frequencies in blood, and DNA damage in blood, brain, and liver cells 4 hr after final dosing. Flow cytometric evaluation of blood revealed no significant increases in MN-RET. Comet assay evaluations of blood leukocytes and cells of the liver, as well as of the striatum, hippocampus, and frontal cortex of the brain showed no increases in DNA damage in MPH-treated rats in any of the three treatment groups. Thus, the previously reported observations of DNA damage in blood and brain tissue of rats exposed to MPH for 28 days were not confirmed in this study. Additionally, no histopathological changes in brain or heart, or elevated serum biomarkers of cardiac injury were observed in these MPH-exposed rats. Environ. Mol. Mutagen. 2010. Published 2009 Wiley-Liss, Inc. [source]


    Radioprotective effects of Daflon against genotoxicity induced by gamma irradiation in human cultured lymphocytes

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 9 2009
    Seyed Jalal Hosseinimehr
    Abstract The ability of Daflon to protect against genotoxicity induced by gamma irradiation has been investigated in vivo and in vitro in cultured lymphocytes from healthy human volunteers. Peripheral human blood samples were collected predose (10 min before) and 1, 2, and 3 hr after a single oral ingestion of 1000 mg of Daflon. At each time point, whole blood was exposed in vitro to 150 cGy of cobalt-60 gamma rays, and then the lymphocytes were cultured with mitogenic stimulation to determine the micronuclei in cytokinesis-blocked binucleated cells. For each volunteer, the results showed a significant increase in the incidence of micronuclei after exposure to gamma irradiation as compared to control unexposed samples. As early as 1 hr after Daflon administration, a significant decrease in the incidence of micronuclei was observed in comparison with similarly irradiated lymphocytes collected before administration. The maximum protection was reached 1 hr after administration of Daflon with a significant decrease in the frequency of micronuclei of 40%. These findings suggest the possible application of Daflon for the protection of human lymphocytes from the genetic damage and side effects induced by gamma irradiation. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source]


    Suppression of the mouse double minute 4 gene causes changes in cell cycle control in a human mesothelial cell line responsive to ultraviolet radiation exposure

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 9 2009
    Melisa Bunderson-Schelvan
    Abstract The TP53 tumor suppressor gene is the most frequently inactivated gene in human cancer identified to date. However, TP53 mutations are rare in human mesotheliomas, as well as in many other types of cancer, suggesting that aberrant TP53 function may be due to alterations in its regulatory pathways. Mouse double minute 4 (MDM4) has been shown to be a key regulator of TP53 activity, both independently as well as in concert with its structural homolog, Mouse Double Minute 2 (MDM2). The purpose of this study was to characterize the effects of MDM4 suppression on TP53 and other proteins involved in cell cycle control before and after ultraviolet (UV) exposure in MeT5a cells, a nonmalignant human mesothelial line. Short hairpin RNA (shRNA) was used to investigate the impact of MDM4 on TP53 function and cellular transcription. Suppression of MDM4 was confirmed by Western blot. MDM4 suppressed cells were analyzed for cell cycle changes with and without exposure to UV. Changes in cell growth as well as differences in the regulation of direct transcriptional targets of TP53, CDKN1A (cyclin-dependent kinase 1,, p21) and BAX, suggest a shift from cell cycle arrest to apoptosis upon increasing UV exposure. These results demonstrate the importance of MDM4in cell cycle regulation as well as a possible role inthe pathogenesis of mesothelioma-type cancers. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source]


    Arsenate and dimethylarsinic acid in drinking water did not affect DNA damage repair in urinary bladder transitional cells or micronuclei in bone marrow,

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 9 2009
    Amy Wang
    Abstract Arsenic is a human skin, lung, and urinary bladder carcinogen, and may act as a cocarcinogen in the skin and urinary bladder. Possible modes of action of arsenic carcinogenesis/cocarcinogenesis include oxidative stress induction and inhibition of DNA damage repair. We investigated the effects of arsenic in drinking water on DNA damage repair in urinary bladder transitional cells and on micronucleus formation in bone marrow. F344 rats were given 100 ppm arsenate [As(V)] or dimethylarsinic acid [DMA(V)] in drinking water for 1 week. The in vivo repair of cyclophosphamide (CP)-induced DNA damage resulting from a single oral gavage of CP, and the in vitro repair of hydrogen peroxide (H2O2)- or formaldehyde-induced DNA damage, resulting from adding H2O2 or formaldehyde into cell medium, were measured by the Comet assay. DMA(V) effects were not observed on either CP-induced DNA damage induction or on DNA repair. Neither DMA(V) nor As(V) increased the H2O2 - or formaldehyde-induced DNA damage, and neither inhibited the repair of H2O2 -induced DNA damage. Neither DMA(V) nor As(V) increased the micronucleus frequency, nor did they elevate micronucleus frequency resulting from CP treatment above the level observed by the treatment with CP alone. These results suggest that arsenic carcinogenesis/cocarcinogenesis in the urinary bladder may not be via DNA damage repair inhibition. To our knowledge this is the first report of arsenic effects on DNA damage repair in the urinary bladder. Environ. Mol. Mutagen. 2009. Published 2009 by Wiley-Liss, Inc. [source]


    Centriole separation in DNA damage-induced centrosome amplification

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 8 2009
    Chiara Saladino
    Abstract Altered centrosome numbers are seen in tumor cells in response to DNA damaging treatments and are hypothesised to contribute to cancer development. The mechanism by which the centrosome and chromosome cycles become disconnected after DNA damage is not yet clear. Here, we show that centrosome amplification occurs after ionising radiation (IR) in chicken DT40 cells that lack DNA-PK, Ku70, H2AX, Xpa, and Scc1, demonstrating that these activities are not required for centrosome amplification. We show that inhibition of topoisomerase II induces Chk1-dependent centrosome amplification, a similar response to that seen after IR. In the immortalised, nontransformed hTERT-RPE1 line, we observed centriole splitting, followed by dose-dependent centrosome amplification, after IR. We found that IR results in the formation of single, not multiple, daughter centrioles during centrosome amplification in U2OS osteosarcoma cells. Analysis of BRCA1 and BRCA2 mutant tumor cells showed high levels of centriole splitting in the absence of any treatment. IR caused pronounced levels of centrosome amplification in BRCA1 mutant breast cancer cells. These data show that centrosome amplification occurs after different forms of DNA damage in chicken cells, in nontransformed human cells and in human tumor cell lines, indicating that this is a general response to DNA damaging treatments. Together, our data suggest that centriole splitting is a key step in potentiation of the centrosome amplification that is a general response to DNA damage. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source]


    Comparative mutagenic effects of structurally similar flavonoids quercetin and taxifolin on tester strains Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrA

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 6 2009
    Patrudu S. Makena
    Abstract Quercetin (QT) and Taxifolin (TF) are structurally similar plant polyphenols. Both have been reported to have therapeutic potential as anti-cancer drugs and antioxidants. Mutagenic effects of QT and TF were evaluated using Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrA tester strains. Either in the presence or absence of S9 mix, QT was mutagenic to TA102 and WP2 uvrA. However, the mutagenicity of QT was significantly enhanced in the presence of S9 mix. Likewise, in the presence of Iron (Fe2+) and NADPH generating system (NGS) and absence of S9 mix, QT induced significantly high mutations in both TA102 and WP-2 uvrA. Mutagenicity of QT decreased in both strains in the presence of Iron (Fe2+) or NGS alone. TF was not mutagenic in the presence or absence of S9 mix in both TA102 and WP-2 uvrA 2, regardless of the presence of iron or NGS. Incorporation of antioxidants (ascorbate, superoxide dismutase (SOD), catalase (CAT)) and/or iron chelators (desferroxamine (DF) and ethylenediamine-tetraacetate (EDTA)) in the test systems markedly decreased QT-induced mutations in both tester strains. These results suggest that QT but not TF, could induce mutations in the presence or absence of rat liver S9 or Iron (Fe2+) and NGS in both tester strains by redox cycling and Fenton reactions to produce oxygen free radicals. Our results indicate that a minor structural variation between the two plant polyphenols could elicit a marked difference in their genotoxicities. These results provide a basis for further study into the potential use of QT in combination with iron supplements. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source]


    DNA damage in peripheral blood leukocytes of physically active individuals as measured by the alkaline single cell gel electrophoresis assay

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 4 2009
    Gursatej Gandhi
    Abstract DNA damage induced by physical activity and/or exercise has been reported under different conditions but not for individuals maintaining physical fitness by regular strenuous exercise. Therefore, we compared levels of DNA damage in blood leukocytes of 40 healthy individuals (35 males, 5 females) who regularly exercised in gymnasiums/health clubs and 15 healthy sedentary controls who had never exercised. The former group was selected (after informed consent) on the basis of how long they had been exercising on a regular basis as well as their exercise schedule and regimen. The length of time since starting a regular exercise regimen ranged from 2 months to 9 years, whereas the daily exercise duration ranged from 40 min to 3 hrs and warm-up sessions ranged from none to 90 min. The length of DNA migration (44.66 ± 2.68 ,m in males, 29.62 ± 1.69 ,m in females) and the percentage of cells with tails (79.86 ±1.27% in males, 67.20 ± 0.96% in females) in peripheral blood leukocytes of physically active individuals were increased significantly (P < 0.001) with respect to corresponding values in control males and females (18.85 ± 1.79 ,m, 23.37 ± 3.94 ,m; 24.50 ± 1.98%, 33.00 ± 4.44%, respectively). Highly significant differences for DNA damage were also observed between physically active males and females. These observations, in the absence of any other exposures, indicate a correlation between strenuous exercise to keep fit and increased levels of DNA damage. This finding may have relevance in terms of the ageing process, with diseases associated with aging, and with carcinogenesis. Environ. Mal. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source]


    Three structurally homologous isothiocyanates exert "Janus" characteristics in human HepG2 cells

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2009
    Evelyn Lamy
    Abstract In this study, we used the single cell gel electrophoresis (SCGE) assay and the micronucleus (MN) test to investigate the DNA damaging effects and the antigenotoxic potencies of three structurally related ITCs in human HepG2 cells. The results show that all three ITCs possess the characteristic of a "Janus" compound, i.e., they exert both significant genotoxicity and antigenotoxicity, depending on the concentrations used in the test systems applied. Regression line analysis of the results derived by SCGE analysis showed genotoxic potency of the ITCs in the following order: 3-methylthiopropyl ITC (MTPITC) > 4-methylthiobutyl ITC (MTBITC) > 5-methylthiopentyl ITC (MTPeITC); however, this order in genotoxic potency was not confirmed by MN analysis. Additionally, the MN test showed significant mutagenicity of the test substances at higher concentrations when compared with the SCGE assay. Twenty-four hour-treatment of the cells with the ITCs, followed by a 1-hr recovery period, showed significant DNA repair in the SCGE assay at a concentration ,10 ,M MTPITC, ,3 ,M MTBITC, and ,0.1 ,M MTPeITC, respectively. In antigenotoxicity studies, the most effective concentration of MTPITC and MTPeITC toward B(a)P-induced DNA damage was 0.1 ,M in both test systems. MTBITC suppressed MN formation in B(a)P-treated cells to the background level at a concentration of 1 ,M. The ambivalent character of the ITCs under studymust be further clarified, especially in the possiblecontext of high dose therapeutic applications. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source]


    A preliminary characterization of the mutagenicity of atmospheric particulate matter collected during sugar cane harvesting using the Salmonella/microsome microsuspension assay

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 4 2008
    Gisela de Aragão Umbuzeiro
    Abstract During sugar cane harvesting season, which occurs from May to November of each year, the crops are burnt, cut, and transported to the mills. There are reports showing that mutagenic activity and PAH content increase during harvesting season in some areas of São Paulo State in comparison with nonharvesting periods. The objective of this work was to preliminarily characterize the mutagenic activity of the total organic extracts as well as corresponding organic fractions of airborne particulate matter (PM) collected twice from two cities, Araraquara (ARQ) and Piracicaba (PRB), during sugar cane harvesting season using the Salmonella/microsome microssuspension assay. One sample collected in São Paulo metropolitan area was also included. The mutagenicity of the total extracts ranged from 55 to 320 revertants per cubic meter without the addition of S9 and from not detected to 57 revertants per cubic meter in the presence of S9 in areas with sugar cane plantations. Of the three fractions analyzed, the most polar ones (nitro and oxy) were the most potent. A comparison of the response of TA98 with YG1041 and the increased potencies without S9 indicated that nitro compounds are causing the observed effect. More studies are necessary to verify the sources of the mutagenic activity such as burning of vegetal biomass and combustion of heavy duty vehicles used to transport the sugar cane to the mills. The Salmonella/microsome assay can be an important tool to monitor the atmosphere for mutagenicity during sugar cane harvesting season. Environ. Mol. Mutagen. 2008. © 2008 Wiley-Liss, Inc. [source]


    Relative mutagenic potencies of several nucleoside analogs, alone or in drug pairs, at the HPRT and TK loci of human TK6 lymphoblastoid cells,

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3-4 2007
    Meghan M. Carter
    Abstract Experiments were performed to investigate the impact of didanosine (ddI), lamivudine (3TC), and stavudine (d4T) on cell survival and mutagenicity in two reporter genes, hypoxanthine-guanine phosphoribosyltransferase (HPRT) and thymidine kinase (TK), using a cell cloning assay for assessing the effects of individual nucleoside analogs (NRTIs)/drug combinations in human TK6 B-lymphoblastoid cells. Three-day treatments with 0, 33, 100, or 300 ,M ddI, 3TC, or ddI-3TC produced positive trends for increased HPRT and TK mutant frequencies. While dose-related trends were too small to reach significance after treatments with d4T or d4T-3TC, pairwise comparisons with control cells indicated that exposure to 100 ,M d4T or d4T-3TC caused significant elevations in HPRT mutants. Measurements of mutagenicity in cells exposed to d4T (or d4T-3TC) were complicated by the cytotoxicity of this NRTI. Enhanced increases in mutagenic responses to combined NRTI treatments, compared with single drug treatments, occurred as additive to synergistic effects in the HPRT gene of cells exposed to 100 ,M ddI-3TC or 100 ,M d4T-3TC, and in the TK gene of cells exposed to 100 or 300 ,M ddI-3TC. Comparisons of these data to mutagenicity studies of other NRTIs in the same system (Meng Q et al. [2000c]: Proc Natl Acad Sci USA 97:12667,126671; Torres SM et al. [2007]: Environ Mol Mutagen) indicate that the relative mutagenic potencies for all drugs tested to date are: AZT-ddI > ddI-3TC > AZT-3TC , AZT-3TC-ABC (abacavir) > AZT ,ddI > d4T-3TC > 3TC > d4T , ABC. These collective data suggest that all NRTIs with antiviral activity against HIV-1 may cause host cell DNA damage and mutations, and impose a cancer risk. Environ. Mol. Mutagen., 2007. © 2007 Wiley-Liss, Inc. [source]


    Assessing the impact of pollution on the Japaratuba river in Brazil using the Drosophila wing spot test

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2007
    Silmara de Moraes Pantaleão
    Abstract The Drosophila melanogaster somatic mutation and recombination test (SMART) was used to assess the genotoxicity of surface (S) and bottom (B) water and sediment samples collected from Sites 1 and 2 on the Japaratuba River (Sergipe, Brazil), an area impacted by a petrochemical industrial complex that indirectly discharges treated effluent (produced water) into the river. The genotoxicity tests were performed in standard (ST) cross and high bioactivation (HB) cross flies and were conducted on samples taken in March (dry season) and in July (rainy season) of 2003. Mutant spot frequencies found in treatments with unprocessed water and sediment samples from the test sites were compared with the frequencies observed for similar samples taken from a clean reference site (the Jacarecica River in Sergipe, Brazil) and those of negative (ultrapure water) controls. While samples from the Japaratuba River generally produced greater responses than those from the Jacarecica River, positive responses were detected for both the test and reference site samples. All the water samples collected in March 2003 were genotoxic. In July 2003, the positive responses were restricted to water samples collected from Sites 1 B and 2 S in the ST cross. The genotoxicity of the water samples was due to mitotic recombination, and the samples produced similar genotoxic responses in ST and HB flies. The spot frequencies found in the July water samples were considerably lower than those for the March water samples, suggesting a seasonal effect. The only sediment samples that were genotoxic were from Site 1 (March and July) and from the Jacarecica River (March). The genotoxins in these samples produced both somatic mutation (limited to the Site 1 sample in HB flies) and recombination. The results of this study indicate that samples from both the Japaratuba and Jacarecica Rivers were genotoxic, with the most consistently positive responses detected with Site 1 samples, the site closest to the putative pollution source. Environ. Mol. Mutagen. 48:, 2007. © 2007 Wiley-Liss, Inc. [source]


    Effect of mangiferin on radiation-induced micronucleus formation in cultured human peripheral blood lymphocytes

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2005
    Ganesh Chandra Jagetia
    Abstract Irradiation causes a variety of lesions in important biomolecules of the cell through generation of free radicals leading to genomic instability. DNA strand breaks, acentric fragments, or defective kinetochores are manifested as micronuclei after the first cell division. Chemicals that can trap free radicals may reduce the deleterious effects of ionizing radiation. Mangiferin (MGN), a glucosylxanthone derived from Mangifera indica (mango), was investigated for its ability to reduce the frequency of radiation-induced micronucleated binucleate cells (MNBNCs) in cultured human peripheral blood lymphocytes (HPBLs). HPBL cultures were pretreated with 0, 5, 10, 20, 50, and 100 ,g/ml of MGN for 30 min before exposure to 3 Gy of 60Co ,-radiation. The maximum decline in radiation-induced micronuclei was observed at a concentration of 50 ,g/ml MGN; thereafter, a nonsignificant elevation in MNBNC frequency was observed at 100 ,g/ml MGN. Since the lowest MNBNC frequency was observed for 50 ,g/ml MGN, dose-response studies were undertaken using this concentration. Irradiation of HPBLs with 0, 1, 2, 3, or 4 Gy of ,-radiation caused a dose-dependent elevation in the MNBNC frequency, while treatment of HPBLs with 50 ,g/ml MGN 30 min before radiation resulted in significant declines in these frequencies. MGN alone did not alter the proliferation index. Irradiation caused a dose-dependent decline in the proliferation index, while treatment of HPBLs with 50 ,/ml MGN significantly elevated the proliferation index in irradiated cells. MGN treatment reduced hydrogen peroxide-induced lipid peroxidation in HPBLs in a concentration-dependent fashion. In cell-free studies, MGN inhibited the induction of ·OH (hydroxyl), O2·, (superoxide), DPPH (1,1-diphenyl-2-picrylhydrazyl), and ABTS·+ (2,2-azino-bis-3-ethyl benzothiazoline-6-sulphonic acid) radicals in a dose-dependent manner. The results of this study indicate that MGN possesses radioprotective properties by suppressing the effects of free radicals. Environ. Mol. Mutagen. 45:000,000, 2005. © 2005 Wiley-Liss, Inc. [source]


    Relationships between cagA, vacA, and iceA genotypes of Helicobacter pylori and DNA damage in the gastric mucosa

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2004
    Marcelo S.P. Ladeira
    Abstract Helicobacter pylori (H. pylori) is believed to predispose carriers to gastric cancer by inducing chronic inflammation. The inflammatory processes may result in the generation of reactive oxygen and nitrogen species that damage DNA. In this study, we investigated the relationships between DNA damage in the gastric mucosa and cagA, vacA, and iceA genotypes of H. pylori. The study was conducted with biopsies from the gastric antrum and corpus of 98 H. pylori -infected and 26 uninfected control patients. H. pylori genotypes were determined by PCR and DNA damage was measured in gastric mucosal cells by the Comet assay (single cell gel electrophoresis). All patients were nonsmokers, not abusing alcohol, and not using prescription or recreational drugs. Levels of DNA damage were significantly higher (P < 0.0001) in the H. pylori -infected patients than in uninfected patients. In comparison with the level of DNA damage in the uninfected controls, the extent of DNA damage in both the antrum (OR = 8.45; 95% CI = 2.33,37.72) and the corpus (OR = 6.55; 95% CI = 2.52,17.72) was related to infection by cagA+/vacAs1m1 and iceA1 strains. The results indicate that the genotype of H. pylori is related to the amount of DNA damage in the gastric mucosa. These genotypes could serve as biomarkers for the risk of extensive DNA damage and possibly gastric cancer. Environ. Mol. Mutagen. 44:91,98, 2004. © 2004 Wiley-Liss, Inc. [source]


    Effect of artificial mixtures of environmental polycyclic aromatic hydrocarbons present in coal tar, urban dust, and diesel exhaust particulates on MCF-7 cells in culture

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2004
    Brinda Mahadevan
    Abstract Human exposure to polycyclic aromatic hydrocarbons (PAHs) occurs through complex mixtures. The National Institute of Standards and Technology has established standard reference materials (SRMs) for selected PAH mixtures that are composed of carcinogenic, noncarcinogenic, and weakly carcinogenic compounds, such as those derived from coal tar (SRM 1597), atmospheric particulate matter (SRM 1649), and diesel particulate matter (SRM 1650). To study the effects of PAHs with different carcinogenic potential in complex mixtures, and to investigate the metabolic activation of noncarcinogenic and weakly carcinogenic PAHs to DNA-binding derivatives, artificial mixtures (1597H, 1649H, and 1650H) were prepared in the laboratory. These artificial mixtures contained the same relative ratios of noncarcinogenic and weakly carcinogenic PAHs present in SRM 1597, SRM 1649, and SRM 1650. The human mammary carcinoma-derived cell line MCF-7 was treated with these artificial mixtures and analyzed for PAH-DNA adduct formation and the induction of cytochrome P450 (CYP) enzymes. We found that the artificial mixtures formed lower but detectable levels of DNA adducts 24 and 48 hr after treatment than benzo[a]pyrene. Induction of CYP enzyme activity was measured by the ethoxyresorufin- O -deethylase assay, and the expression of CYP1A1 and CYP1B1 was confirmed by immunoblots. Both noncarcinogenic and weakly carcinogenic PAHs present in the artificial mixtures have the ability to induce CYP1A1 and CYP1B1 in MCF-7 cells and contribute to DNA binding. Therefore, it is necessary to take into account the noncarcinogenic and weakly carcinogenic PAHs present in environmental mixtures in assessing the potential risk associated with human exposure. Environ. Mol. Mutagen. 44:99,107, 2004. © 2004 Wiley-Liss, Inc. [source]


    Dose- and time-dependent responses for micronucleus induction by X-rays and fast neutrons in gill cells of medaka (Oryzias latipes)

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2004
    Akinori Takai
    Abstract Medaka fish (Oryzias latipes) were exposed to various doses of X-rays or fast neutrons, and the frequency of micronucleated cells (MNCs) was measured in gills sampled at 12- or 24-hr intervals from 12 to 96 hr after exposure. The resulting time course of MNC frequency was biphasic, with a clear peak 24 hr after exposure, irrespective of the kind of radiation applied and the dose used. The half-life of MNCs induced in the gill tissues by the two exposures fluctuated around 28 hr, with no significant dose-dependent trend for either X-ray- or neutron-exposed fish. As assayed 24 hr after exposure, the MNC frequency increased linearly over the control level with increasing doses of both X-rays and fast neutrons. The relative biological effectiveness (RBE) of fast neutrons to X-rays for MNC induction was estimated to be 4.3 ± 0.6. This value is close to the RBE value of 5.1 ± 0.3 reported for fast neutron induction of somatic crossing-over mutations in Drosophila melanogaster that arise from recombination repair of DNA double-strand breaks. These results and other data support our conclusion that the medaka gill cell micronucleus assay is a reliable short-term test for detecting potential inducers of DNA double-strand breaks. Environ. Mol. Mutagen. 44:108,112, 2004. © 2004 Wiley-Liss, Inc. [source]


    Nitric oxide and p53 in cancer-prone chronic inflammation and oxyradical overload disease,

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2004
    Julie E. Goodman
    Abstract Nitric oxide (NO·), which is generated under chronic inflammatory conditions that predispose individuals to cancer, has paradoxical effects. NO· can activate p53, which can result in anti-carcinogenic effects, or it can be mutagenic and increase cancer risk. We explored the mechanisms by which NO· induced p53 activation in vitro and found that NO· induced p53 accumulation and phosphorylation, particularly at ser-15, via ATM and ATR kinases, which then led to cell cycle arrest at G2/M. We next examined proteins in these pathways in both inflamed and normal human colon tissue. Inducible nitric oxide synthase (iNOS) levels and p53-P-ser15 levels were positively correlated with the degree of inflammation and with each other. Additionally, the p53 targets, HDM-2 and p21 (WAF1), were present in ulcerative colitis (UC) colon, but undetectable in normal colon, consistent with activated p53. We also found higher p53 mutant frequencies of both G:C , A:T transitions at the CpG site of codon 248 and C:G , T:A transitions at codon 247 in lesional colon tissue from UC cases versus nonlesional tissue from these cases or colon tissue from normal adult controls. Consistent with nitrosative stress and the deamination of 5-methylcytosine, p53 mutations were also detected in sporadic colon cancer tissue and were associated with iNOS activity in these tissues. These studies identified a potential mechanistic link between NO· and p53 in UC and sporadic colon cancer. Environ. Mol. Mutagen. 44:3,9, 2004. Published 2004 Wiley-Liss, Inc. [source]


    Folate, colorectal carcinogenesis, and DNA methylation: Lessons from animal studies

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2004
    Young-In Kim
    Abstract Folate, a water-soluble B vitamin and cofactor in one-carbon transfer, is an important nutritional factor that may modulate the development of colorectal cancer (CRC). Epidemiologic and clinical studies indicate that dietary folate intake and blood folate levels are inversely associated with CRC risk. Collectively, these studies suggest an , 40% reduction in the risk of CRC in individuals with the highest dietary folate intake compared with those with the lowest intake. Animal studies using chemical and genetically predisposed rodent models have provided considerable support for a causal relationship between folate depletion and colorectal carcinogenesis as well as a dose-dependent protective effect of folate supplementation. However, animal studies also have shown that the dose and timing of folate intervention are critical in providing safe and effective chemoprevention; exceptionally high supplemental folate levels and folate intervention after microscopic neoplastic foci are established in the colorectal mucosa promote, rather than suppress, colorectal carcinogenesis. These animal studies, in conjunction with clinical observations, suggest that folate possesses dual modulatory effects on carcinogenesis depending on the timing and dose of folate intervention. Folate deficiency has an inhibitory effect, whereas folate supplementation has a promoting effect on the progression of established neoplasms. In contrast, folate deficiency in normal epithelial tissues appears to predispose them to neoplastic transformation, and modest levels of folate supplementation suppress the development of tumors in normal tissues. Notwithstanding the limitations associated with animal models, these studies suggest that the optimal timing and dose of folate intervention must be established for safe and effective chemoprevention in humans. Folate is an important factor in DNA synthesis, stability, and integrity, the repair aberrations of which have been implicated in colorectal carcinogenesis. Folate may also modulate DNA methylation, which is an important epigenetic determinant in gene expression (an inverse relationship), in the maintenance of DNA integrity and stability, in chromosomal modifications, and in the development of mutations. A mechanistic understanding of how folate status modulates colorectal carcinogenesis further strengthens the case for a causal relationship and provides insight into a possible chemopreventive role of folate. Environ. Mol. Mutagen. 44:10,25, 2004. © 2004 Wiley-Liss, Inc. [source]


    Bacterial and mammalian-cell genotoxicity of mixtures of chlorohydroxyfuranones, by-products of water chlorination

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 4 2004
    Jorma Mäki-Paakkanen
    Abstract The genotoxic responses of mixtures of four chlorohydroxyfuranones (CHFs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), 3,4-dichloro-5-hydroxy-2(5H)-furanone (MCA), 3-chloro- 4-(chloromethyl)-5-hydroxy-2(5H)-furanone (CMCF) and 3-chloro-4-methyl-5-hydroxy-2(5H)-furanone (MCF), were compared with the genotoxicity of the individual compounds. Genotoxicity was evaluated in the Salmonella reversion assay (Ames test), the in vitro Chinese hamster ovary (CHO) cell Hprt mutation assay, and in the CHO chromosome aberration test. When tested individually, the concentrations of the chemicals that were chosen for the mixtures induced no or only a modest increase in the genotoxic effects, and caused little or no cytotoxicity. In the Ames test, the genotoxic responses caused by the mixtures of CHFs did not follow simple additivity. Synergism was observed with strains TA97 and TA98, and antagonism with strain TA100. In the CHO/Hprt mutation assay, the mutagenic response of the mixtures was inconsistent, with near additivity seen with a mixture of CHFs that resulted in 12% cell survival. In contrast, the four CHFs together consistently caused more structural chromosome damage (mainly chromatid-type breaks and exchanges) compared to the sum of net effects of the four CHFs tested alone. Also, a potentiating effect was consistently seen for the cytotoxicity of the CHF mixtures both in the CHO/Hprt mutation assay and the chromosome aberration test. The present results indicate that the genotoxic effects of CHF mixtures can be greater than additive. Such effects may be worth considering in the cancer risk assessment of chlorinated drinking water. Environ. Mol. Mutagen. 43:217,225, 2004. © 2004 Wiley-Liss, Inc. [source]


    Effect of deletion of SOS-induced polymerases, pol II, IV, and V, on spontaneous mutagenesis in Escherichia coli mutD5

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 4 2004
    Anetta Nowosielska
    Abstract The E. coli dnaQ gene encodes the , subunit of DNA polymerase III (pol III) responsible for the proofreading activity of this polymerase. The mutD5 mutant of dnaQ chronically expresses the SOS response and exhibits a mutator phenotype. In this study we have constructed a set of E. coli AB1157 mutD5 derivatives deleted in genes encoding SOS-induced DNA polymerases, pol II, pol IV, and pol V, and estimated the frequency and specificity of spontaneous argE3,Arg+ reversion in exponentially growing and stationary-phase cells of these strains. We found that pol II exerts a profound effect on the specificity of spontaneous mutation in exponentially growing cells. Analysis of growth-dependent Arg+ revertants in mutD5 polB+ strains revealed that Arg+ revertants were due to tRNA suppressor formation, whereas those in mutD5 ,polB strains arose by back mutation at the argE3 ochre site. In stationary-phase bacteria, Arg+revertants arose mainly by back mutation, regardless of whether they were proficient or deficient in pol II. Our results also indicate that in a mutD5 background, the absence of pol II led to increased frequency of Arg+ growth-dependent revertants, whereas the lack of pol V caused its dramatic decrease, especially in mutD5 ,umuDC and mutD5 ,umuDC ,polB strains. In contrast, the rate of stationary-phase Arg+revertants increased in the absence of pol IV in the mutD5 ,dinB strain. We postulate that the proofreading activity of pol II excises DNA lesions in exponentially growing cells, whereas pol V and pol IV are more active in stationary-phase cultures. Environ. Mol. Mutagen. 43:226,234, 2004. © 2004 Wiley-Liss, Inc. [source]


    Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2004
    Ronald D. Snyder
    Abstract Computational models are currently being used by regulatory agencies and within the pharmaceutical industry to predict the mutagenic potential of new chemical entities. These models rely heavily, although not exclusively, on bacterial mutagenicity data of nonpharmaceutical-type molecules as the primary knowledge base. To what extent, if any, this has limited the ability of these programs to predict genotoxicity of pharmaceuticals is not clear. In order to address this question, a panel of 394 marketed pharmaceuticals with Ames Salmonella reversion assay and other genetic toxicology findings was extracted from the 2000,2002 Physicians' Desk Reference and evaluated using MCASE, TOPKAT, and DEREK, the three most commonly used computational databases. These evaluations indicate a generally poor sensitivity of all systems for predicting Ames positivity (43.4,51.9% sensitivity) and even poorer sensitivity in prediction of other genotoxicities (e.g., in vitro cytogenetics positive; 21.3,31.9%). As might be expected, all three programs were more highly predictive for molecules containing carcinogenicity structural alerts (i.e., the so-called Ashby alerts; 61% ± 14% sensitivity) than for those without such alerts (12% ± 6% sensitivity). Taking all genotoxicity assay findings into consideration, there were 84 instances in which positive genotoxicity results could not be explained in terms of structural alerts, suggesting the possibility of alternative mechanisms of genotoxicity not relating to covalent drug-DNA interaction. These observations suggest that the current computational systems when applied in a traditional global sense do not provide sufficient predictivity of bacterial mutagenicity (and are even less accurate at predicting genotoxicity in tests other than the Salmonella reversion assay) to be of significant value in routine drug safety applications. This relative inability of all three programs to predict the genotoxicity of drugs not carrying obvious DNA-reactive moieties is discussed with respect to the nature of the drugs whose positive responses were not predicted and to expectations of improving the predictivity of these programs. Limitations are primarily a consequence of incomplete understanding of the fundamental genotoxic mechanisms of nonstructurally alerting drugs rather than inherent deficiencies in the computational programs. Irrespective of their predictive power, however, these programs are valuable repositories of structure-activity relationship mutagenicity data that can be useful in directing chemical synthesis in early drug discovery. Environ. Mol. Mutagen. 43:143,158, 2004. © 2004 Wiley-Liss, Inc. [source]


    Comparative in vitro and in vivo genotoxicities of 7H -benzo[c]fluorene, manufactured gas plant residue (MGP), and MGP fractions

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2004
    Leslie Cizmas
    Abstract Manufactured gas plant residue (MGP) is a complex mixture of polycyclic aromatic hydrocarbons (PAHs) that is tumorigenic in the lungs of mice. This study compared the relative genotoxicity of 7H -benzo[c]fluorene (BC), a PAH component of MGP, with MGP and MGP fractions in order to assess the contribution of BC to the genotoxicity of MGP. An MGP sample was separated into seven fractions (F1,F7) using silica gel column chromatography with petroleum ether (PE) followed by PE:acetone (99:1 v/v, then 98:2). PAHs were quantified using gas chromatography/mass spectrometry. An aliquot of F2, the fraction with the highest BC concentration and highest weighted mutagenic activity in Salmonella typhimurium strain TA98, was further separated using silica gel thin-layer chromatography with hexane. The first F2 subfraction, sF2-a, was enriched in BC and coeluting compounds and contained 35,000 ppm BC and 216,109 ppm carcinogenic PAHs (cPAHs, the sum of seven PAHs categorized by the U.S. EPA as class B2 carcinogens). The second F2 subfraction, sF2-b, contained a ninefold lower concentration of BC, with 3,900 ppm BC and 45,216 ppm cPAHs. Female ICR mice received topical application of crude MGP, crude MGP spiked with analytical-grade BC, F2, sF2-a, sF2-b, or analytical-grade BC. DNA adduct levels were analyzed by nuclease P1-enhanced 32P-postlabeling. In lung DNA of mice receiving 0.48 or 3.0 mg/mouse, net total RAL × 109 values were F2, 30.8 and 87.2; sF2-a, 24.8 and 106.7; and sF2-b, 19.6 and 151.0, respectively. Mice dosed with 0.10 mg analytical-grade BC (the mass of BC in 3.0 mg sF2-a) exhibited a net total RAL × 109 value of 7.03 in lung DNA. This was equal to approximately 7% of the total RAL × 109 value produced by 3.0 mg sF2-a. Thus, although BC appears to make an appreciable contribution to pulmonary adduct formation, the results suggest that MGP components other than BC play an important role in lung DNA adduct formation following topical MGP administration. Environ. Mol. Mutagen. 43:159,168, 2004. © 2004 Wiley-Liss, Inc. [source]


    Differential mutagen sensitivity of peripheral blood lymphocytes from smokers and nonsmokers: Effect of human cytomegalovirus infection

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2004
    Thomas Albrecht
    Abstract We used the mutagen sensitivity assay to test the hypothesis that human cytomegalovirus (HCMV) infection modifies the sensitivity of cells to genetic damage from genotoxic agents. Chromosome aberration (CA) frequency in peripheral blood lymphocytes (PBLs) from 20 smokers who were matched with 20 nonsmokers by age (± 5 years), sex, and ethnicity was evaluated following in vitro exposure to bleomycin and/or HCMV infection. Bleomycin induced significant (P < 0.05) concentration-dependent increases in the frequency of aberrant cells, chromatid-type damage (breaks), and chromosome-type aberrations (deletions, rearrangements) in PBLs. The baseline (background) CA frequency was similar in both smokers and nonsmokers. Significantly higher frequencies of aberrant cells (P < 0.05) were observed in PBLs from smokers compared to nonsmokers at all bleomycin concentrations tested (10, 30 and 100 ,g/ml). Infection of PBLs with HCMV induced a significant (P < 0.05) twofold increase in the frequency of CA (primarily chromatid breaks) in PBLs, regardless of the smoking status. PBLs from smokers and nonsmokers infected with HCMV prior to challenge with bleomycin demonstrated significant (P < 0.05) concentration-dependent increases in the levels of aberrant cells, chromatid-type damage (breaks), and chromosome-type aberrations (deletions, rearrangements) compared to noninfected cells challenged with bleomycin. The frequency of induced CA was consistently higher for PBLs derived from smokers relative to nonsmokers (P = 0.06 and 0.002). These data indicate that, individually, both smoking and HCMV infection significantly enhance the sensitivity of PBLs to bleomycin-induced genetic damage. More importantly, the data also suggest that smoking and HCMV infection interact synergistically to enhance the sensitivity of PBLs to such damage. Environ. Mol. Mutagen. 43:169,178, 2004. © 2004 Wiley-Liss, Inc. [source]


    Characterization of Hprt mutations in cDNA and genomic DNA of T-cell mutants from control and 1,3-butadiene-exposed male B6C3F1 mice and F344 rats

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2004
    Quanxin Meng
    Abstract A multiplex PCR procedure for analysis of genomic DNA mutations in the mouse hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene was developed and then used with other established methods for the coincident identification of large- and small-scale genetic alterations in the Hprt gene of mutant T-cell isolates propagated from sham- and 1,3-butadiene (BD)-exposed mice and rats. The spectra data for RT-PCR/cDNA analysis and multiplex PCR of genomic DNA from Hprt mutants were combined, and statistical analyses of the mutant fractions for the classes of mutations identified in control versus exposed animals were conducted. Under the assumption that the mutant fractions are distributed as Poisson variates, BD exposure of mice significantly increased the frequencies of (1) nearly all types of base substitutions; (2) single-base deletions and insertions; and (3) all subcategories of deletions. Significantly elevated fractions of G:C,C:G and A:T,T:A transversions in the Hprt gene of BD-exposed mice were consistent with the occurrence of these substitutions as the predominant ras gene mutations in multiple tumor types increased in incidence in carcinogenicity studies of BD in mice. BD exposure of rats produced significant increases in (1) base substitutions only at A:T base pairs; (2) single-base insertions; (3) complex mutations; and (4) deletions (mainly 5, partial and complete gene deletions). Future coincident analyses of large- and small-scale mutations in rodents exposed to specific BD metabolites should help identify species differences in the sources of deletion mutations and other types of mutations induced by BD exposures in mice versus rats. Environ. Mol. Mutagen. 43:75,92, 2004. © 2004 Wiley-Liss, Inc. [source]


    Proteomic analysis of cellular responses to low concentration N -methyl- N,-nitro- N -nitrosoguanidine in human amnion FL cells

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2004
    Jinghua Jin
    Abstract We have shown previously that exposure to a low concentration of N -methyl- N,-nitro- N -nitrosoguanidine (MNNG) induces comprehensive changes in the protein expression profile of human amnion FL cells, including the induction, suppression, upregulation, and downregulation of various proteins. In addition, by proteomic analysis combining two-dimensional gel electrophoresis (2-DE) and mass spectrometry, some of the induced and suppressed proteins were identified. In this study, we identified an additional 18 proteins among those that were either up- or downregulated by MNNG treatment. The proteins identified were a heterogeneous group that included several zinc finger proteins, proteins involved in signal transduction, cytoskeletal proteins, cell-cycle regulation proteins, and proteins with unknown functions. The involvement of these proteins in the cellular responses to alkylating agents has not been reported before and their physiological relevance is not clear. Therefore, our findings may help better understand the global cellular stress responses to chemical carcinogens, and may lead to new studies on the functions of these MNNG-responsive proteins. Furthermore, some of these proteins may serve as biomarkers for detecting exposure of human populations to environmental carcinogens. Environ. Mol. Mutagen. 43:93,99, 2004. © 2004 Wiley-Liss, Inc. [source]


    Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2004
    Renata Canalle
    Abstract Acute lymphoblastic leukemia (ALL) is the most common form of pediatric cancer. Although exposure to environmental agents appears to predispose individuals to this disease, little attention has been paid to the role of genetic susceptibility to environmental exposures in the etiology of childhood ALL. The enzymes GSTM1, GSTT1, GSTP1, CYP1A1, and CYP2E1 are involved in the bioactivation and detoxification of a variety of xenobiotics present in food, organic solvents, tobacco smoke, drugs, alcoholic drinks, pesticides, and environmental pollutants. Polymorphisms in the genes coding for these enzymes have been associated with increased susceptibility to different cancers, including hematologic malignancies. To investigate whether these polymorphisms represent risk-modifying factors for childhood ALL, a study was conducted involving 113 Brazilian patients of childhood ALL and 221 controls with similar ethnic backgrounds. The data revealed that carriers of the rare GSTP1 Val allele were at higher risk of ALL (odds ratio [OR] = 2.7; 95% confidence interval [CI] = 1.1,6.8; P = 0.04). No difference was found in the prevalence of the GSTM1 and GSTT1 null genotypes between ALL patients and the controls, and no association was found between CYP1A1*2 and CYP2E1*3 variants and ALL. However, when the mutant CYP1A1 and CYP2E1 alleles were considered together with the GSTM1 and GSTP1 risk-elevating genotypes, the risk of ALL was increased further (OR = 10.3; 95% CI = 1.0,111.8; P = 0.05), suggesting a combined effect. These results imply that genetic variants of xenobiotic metabolizing genes influence the risk of developing childhood ALL. Environ. Mol. Mutagen. 43:100,109, 2004. © 2004 Wiley-Liss, Inc. [source]


    Genetic damage detected in CD-1 mouse pups exposed perinatally to 3,-azido-3,-deoxythymidine and dideoxyinosine via maternal dosing, nursing, and direct gavage

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2004
    Jack B. Bishop
    Abstract Human immunodeficiency virus (HIV)-infected pregnant women are administered nucleoside-analogue antiretrovirals to reduce maternal-infant viral transmission. The current protocol recommends treating newborns for 6 additional weeks postpartum. The treatment is effective, but the risk of drug-induced chromosomal damage in neonates remains undefined. We used a mouse model to investigate this concern. In a multigeneration reproductive toxicity study, female CD-1 mice received 3,-azido-3,-deoxythymidine (AZT) and dideoxyinosine (ddI) (50/250, 75/375, 150/750 mg/kg/day AZT/ddI) by gavage twice daily in equal fractions beginning prior to mating and continuing throughout gestation and lactation. Direct pup dosing (same regimen) began on postnatal day (PND) 4. Peripheral blood erythrocytes of male pups were screened for micronuclei, markers of chromosomal damage, on PNDs 1, 4, 8, and 21. Extraordinary increases in micronucleated cells were noted in pups for each treatment group at each sampling time; treated dams exhibited smaller yet significant increases in micronucleated erythrocytes. The frequencies of micronucleated cells in untreated pups were higher than in the untreated dams, and all pups had markedly elevated levels of circulating reticulocytes compared to dams. These observations suggest that fetal and neonatal mouse hematopoietic precursor cells have heightened sensitivity to genotoxic agents, perhaps due to rapid cell proliferation during the perinatal period of development. The amount of genetic damage observed in treated pups raises concern for the potential of similar damage in humans. Investigations of chromosomal integrity in exposed newborns and children are recommended. Environ. Mol. Mutagen. 43:3,9, 2004. © 2004 Wiley-Liss, Inc. [source]