Home About us Contact | |||
Muscle Physiology (muscle + physiology)
Selected AbstractsProtein kinase A modulates A-type potassium currents of larval zebrafish (Danio rerio) white muscle fibresACTA PHYSIOLOGICA, Issue 2 2009C. A. Coutts Abstract Aims:, Potassium (K+) channels are involved in regulating cell excitability and action potential shape. To our knowledge, very little is known about the modulation of A-type K+ currents in skeletal muscle fibres. Therefore, we sought to determine whether K+ currents of zebrafish white skeletal muscle were modulated by protein kinase A (PKA). Methods:, Pharmacology and whole-cell patch clamp were used to examine A-type K+ currents and action potentials associated with zebrafish white skeletal muscle fibres. Results:, Activation of PKA by a combination of forskolin + 3-isobutyl-1-methylxanthine (Fsk + IBMX) decreased the peak current density by ,60% and altered the inactivation kinetics of A-type K+ currents. The specific PKA inhibitor H-89 partially blocked the Fsk + IBMX-induced reduction in peak current density, but had no effect on the change in decay kinetics. Fsk + IBMX treatment did not shift the activation curve, but it significantly reduced the slope factor of activation. Activation of PKA by Fsk + IBMX resulted in a negative shift in the V50 of inactivation. H-89 prevented all Fsk + IBMX-induced changes in the steady-state properties of K+ currents. Application of Fsk + IBMX increased action potential amplitude, but had no significant effect on action potential threshold, half width or recovery rate, when fibres were depolarized with single pulses, paired pulses or with high-frequency stimuli. Conclusion:, PKA modulates the A-type K+ current in zebrafish skeletal muscle and affects action potential properties. Our results provide new insights into the role of A-type K+ channels in muscle physiology. [source] Fish functional design and swimming performanceJOURNAL OF FISH BIOLOGY, Issue 5 2004R. W. Blake Classifications of fish swimming are reviewed as a prelude to discussing functional design and performance in an ecological context. Webb (1984a, 1998) classified fishes based on body shape and locomotor mode into three basic categories: body and caudal fin (BCF) periodic, BCF transient (fast-starts, turns) and median and paired fin (MPF) swimmers. Swimming performance and functional design is discussed for each of these categories. Webb hypothesized that specialization in any given category would limit performance in any other. For example, routine MPF swimmers should be penalized in BCF transient (fast-start propulsion). Recent studies offer much support for Webb's construct but also suggest some necessary amendments. In particular, design and performance compromises for different swimming modes are associated with fish that employ the same propulsor for more than one task (coupled, e.g. the same propulsor for routine steady swimming and fast-starts). For example, pike (BCF transient specialist) achieve better acceleration performance than trout (generalist). Pike steady (BCF periodic) performance, however, is inferior to that of trout. Fish that employ different propulsors for different tasks (decoupled, e.g. MPF propulsion for low-speed routine swimming and BCF motions for fast-starts) do not show serious performance compromises. For example, certain MPF low-speed swimmers show comparable fast-start performance to BCF forms. Arguably, the evolution of decoupled locomotor systems was a major factor underlying the adaptive radiation of teleosts. Low-speed routine propulsion releases MPF swimmers from the morphological constraints imposed by streamlining allowing for a high degree of variability in form. This contrasts with BCF periodic swimming specialists where representatives of four vertebrate classes show evolutionary convergence on a single, optimal ,thunniform' design. However, recent experimental studies on the comparative performance of carangiform and thunniform swimmers contradict some of the predictions of hydromechanical models. This is addressed in regard to the swimming performance, energetics and muscle physiology of tuna. The concept of gait is reviewed in the context of coupled and decoupled locomotor systems. Biomimetic approaches to the development of Autonomous Underwater Vehicles have given a new context and impetus to research and this is discussed in relation to current views of fish functional design and swimming performance. Suggestions are made for possible future research directions. [source] The musculotendinous system of an anguilliform swimmer: Muscles, myosepta, dermis, and their interconnections in Anguilla rostrataJOURNAL OF MORPHOLOGY, Issue 1 2008Nicole Danos Abstract Eel locomotion is considered typical of the anguilliform swimming mode of elongate fishes and has received substantial attention from various perspectives such as swimming kinematics, hydrodynamics, muscle physiology, and computational modeling. In contrast to the extensive knowledge of swimming mechanics, there is limited knowledge of the internal body morphology, including the body components that contribute to this function. In this study, we conduct a morphological analysis of the collagenous connective tissue system, i.e., the myosepta and skin, and of the red muscle fibers that sustain steady swimming, focusing on the interconnections between these systems, such as the muscle-tendon and myosepta-skin connections. Our aim is twofold: (1) to identify the morphological features that distinguish this anguilliform swimmer from subcarangiform and carangiform swimmers, and (2) to reveal possible pathways of muscular force transmission by the connective tissue in eels. To detect gradual morphological changes along the trunk we investigated anterior (0.4L), midbody (0.6L), and posterior body positions (0.75L) using microdissections, histology, and three-dimensional reconstructions. We find that eel myosepta have a mediolaterally oriented tendon in each the epaxial and hypaxial regions (epineural or epipleural tendon) and two longitudinally oriented tendons (myorhabdoid and lateral). The latter two are relatively short (4.5,5% of body length) and remain uniform along a rostrocaudal gradient. The skin and its connections were additionally analyzed using scanning electron microscopy (SEM). The stratum compactum of the dermis consists of ,30 layers of highly ordered collagen fibers of alternating caudodorsal and caudoventral direction, with fiber angles of 60.51 ± 7.05° (n = 30) and 57.58 ± 6.92° (n = 30), respectively. Myosepta insert into the collagenous dermis via fiber bundles that pass through the loose connective tissue of the stratum spongiosum of the dermis and either weave into the layers of the stratum compactum (weaving fiber bundles) or traverse the stratum compactum (transverse fiber bundles). These fiber bundles are evenly distributed along the insertion line of the myoseptum. Red muscles insert into lateral and myorhabdoid myoseptal tendons but not into the horizontal septum or dermis. Thus, red muscle forces might be distributed along these tendons but will only be delivered indirectly into the dermis and horizontal septum. The myosepta-dermis connections, however, appear to be too slack for efficient force transmission and collagenous connections between the myosepta and the horizontal septum are at obtuse angles, a morphology that appears inadequate for efficient force transmission. Though the main modes of undulatory locomotion (anguilliform, subcarangiform, and carangiform) have recently been shown to be very similar with respect to their midline kinematics, we are able to distinguish two morphological classes with respect to the shape and tendon architecture of myosepta. Eels are similar to subcarangiform swimmers (e.g., trout) but are substantially different from carangiform swimmers (e.g., mackerel). This information, in addition to data from kinematic and hydrodynamic studies of swimming, shows that features other than midline kinematics (e.g., wake patterns, muscle activation patterns, and morphology) might be better for describing the different swimming modes of fishes. J. Morphol., 2008. © 2007 Wiley-Liss, Inc. [source] Molecular control of blood flow and angiogenesis: role of nitric oxideJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2009W. C. SESSA Summary., In the past decade, the importance of the vascular endothelium as a multifunctional regulator of vascular smooth muscle physiology and pathophysiology has been appreciated. Indeed, the endothelium responds to hemodynamic stimuli (pressure, shear stress and wall strain) and locally manufactured mediators (such as bradykinin, prostaglandins, angiotensin II and nitric oxide) that can influence blood flow, cell trafficking into tissue and angiogenesis. In this chapter, the importance of nitric oxide (NO) as a mediator of blood flow control, vascular permeability and angiogenesis will be discussed. [source] Development and Experimental Identification of a Biomechanical Model of the Trunk for Functional Electrical Stimulation Control in ParaplegiaNEUROMODULATION, Issue 4 2008Ingenieur Michele Vanoncini ABSTRACT Objectives., Theoretic modeling and experimental studies suggest that functional electrical stimulation (FES) can improve trunk balance in spinal cord injured subjects. This can have a positive impact on daily life, increasing the volume of bimanual workspace, improving sitting posture, and wheelchair propulsion. A closed loop controller for the stimulation is desirable, as it can potentially decrease muscle fatigue and offer better rejection to disturbances. This paper proposes a biomechanical model of the human trunk, and a procedure for its identification, to be used for the future development of FES controllers. The advantage over previous models resides in the simplicity of the solution proposed, which makes it possible to identify the model just before a stimulation session (taking into account the variability of the muscle response to the FES). Materials and Methods., The structure of the model is based on previous research on FES and muscle physiology. Some details could not be inferred from previous studies, and were determined from experimental data. Experiments with a paraplegic volunteer were conducted in order to measure the moments exerted by the trunk-passive tissues and artificially stimulated muscles. Data for model identification and validation also were collected. Results., Using the proposed structure and identification procedure, the model could adequately reproduce the moments exerted during the experiments. The study reveals that the stimulated trunk extensors can exert maximal moment when the trunk is in the upright position. In contrast, previous studies show that able-bodied subjects can exert maximal trunk extension when flexed forward. Conclusions., The proposed model and identification procedure are a successful first step toward the development of a model-based controller for trunk FES. The model also gives information on the trunk in unique conditions, normally not observable in able-bodied subjects (ie, subject only to extensor muscles contraction). [source] Comparison of protein expression in human deltoideus and vastus lateralis muscles using two-dimensional gel electrophoresisPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 10 2005Daniele Capitanio Abstract We have used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to study the expression of contractile and regulatory proteins in human vastus lateralis and deltoideus muscles, in order to understand protein turnover and isoform switching in muscles with the same fiber-type composition but different functional properties. We demonstrate a two- to six-fold overexpression of enzymes associated with glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, and substrate transport in vastus lateralis compared to deltoideus. Expression levels of contractile protein isoforms correlated to the proportion of slow-twitch fibers in deltoideus compared to vastus lateralis are consistent with the different contractile properties of the two muscles. Two proteins involved in free radical homeostasis were differentially expressed, suggesting a direct relationship between radical scavenging and the muscle function. The application of 2-DE and MS to studies of muscle physiology thus offers a more comprehensive assessment of the molecular determinants of muscle function than traditional approaches. [source] |