Muscle Phenotype (muscle + phenotype)

Distribution by Scientific Domains


Selected Abstracts


AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?

ACTA PHYSIOLOGICA, Issue 1 2009
T. E. Jensen
Abstract In skeletal muscle, the contraction-activated heterotrimeric 5,-AMP-activated protein kinase (AMPK) protein is proposed to regulate the balance between anabolic and catabolic processes by increasing substrate uptake and turnover in addition to regulating the transcription of proteins involved in mitochondrial biogenesis and other aspects of promoting an oxidative muscle phenotype. Here, the current knowledge on the expression of AMPK subunits in human quadriceps muscle and evidence from rodent studies suggesting distinct AMPK subunit expression pattern in different muscle types is reviewed. Then, the intensity and time dependence of AMPK activation in human quadriceps and rodent muscle are evaluated. Subsequently, a major part of this review critically examines the evidence supporting a necessary and/or sufficient role of AMPK in a broad spectrum of skeletal muscle contraction-relevant processes. These include glucose uptake, glycogen synthesis, post-exercise insulin sensitivity, fatty acid (FA) uptake, intramuscular triacylglyceride hydrolysis, FA oxidation, suppression of protein synthesis, proteolysis, autophagy and transcriptional regulation of genes relevant to promoting an oxidative phenotype. [source]


Effect of neurotrophin-3 on reinnervation of the larynx using the phrenic nerve transfer technique

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2007
Paul J. Kingham
Abstract Current techniques for reinnervation of the larynx following recurrent laryngeal nerve (RLN) injury are limited by synkinesis, which prevents functional recovery. Treatment with neurotrophins (NT) may enhance nerve regeneration and encourage more accurate reinnervation. This study presents the results of using the phrenic nerve transfer method, combined with NT-3 treatment, to selectively reinnervate the posterior cricoarytenoid (PCA) abductor muscle in a pig nerve injury model. RLN transection altered the phenotype and morphology of laryngeal muscles. In both the PCA and thyroarytenoid (TA) adductor muscle, fast type myosin heavy chain (MyHC) protein was decreased while slow type MyHC was increased. These changes were accompanied with a significant reduction in muscle fibre diameter. Following nerve repair there was a progressive normalization of MyHC phenotype and increased muscle fibre diameter in the PCA but not the TA muscle. This correlated with enhanced abductor function indicating the phrenic nerve accurately reinnervated the PCA muscle. Treatment with NT-3 significantly enhanced phrenic nerve regeneration but led to only a small increase in the number of reinnervated PCA muscle fibres and minimal effect on abductor muscle phenotype and morphology. Therefore, work exploring other growth factors, either alone or in combination with NT-3, is required. [source]


Plasticity of human skeletal muscle: gene expression to in vivo function

EXPERIMENTAL PHYSIOLOGY, Issue 5 2007
Stephen D. R. Harridge
Human skeletal muscle is a highly heterogeneous tissue, able to adapt to the different challenges that may be placed upon it. When overloaded, a muscle adapts by increasing its size and strength through satellite-cell-mediated mechanisms, whereby protein synthesis is increased and new nuclei are added to maintain the myonuclear domain. This process is regulated by an array of mechanical, hormonal and nutritional signals. Growth factors, such as insulin-like growth factor I (IGF-I) and testosterone, are potent anabolic agents, whilst myostatin acts as a negative regulator of muscle mass. Insulin-like growth factor I is unique in being able to stimulate both the proliferation and the differentiation of satellite cells and works as part of an important local repair and adaptive mechanism. Speed of movement, as characterized by maximal velocity of shortening (Vmax), is regulated primarily by the isoform of myosin heavy chain (MHC) contained within a muscle fibre. Human fibres can express three MHCs: MHC-I, -IIa and -IIx, in order of increasing Vmax and maximal power output. Training studies suggest that there is a subtle interplay between the MHC-IIa and -IIx isoforms, with the latter being downregulated by activity and upregulated by inactivity. However, switching between the two main isoforms appears to require significant challenges to a muscle. Upregulation of fast gene programs is caused by prolonged disuse, whilst upregulation of slow gene programs appears to require significant and prolonged activity. The potential mechanisms by which alterations in muscle composition are mediated are discussed. The implications in terms of contractile function of altering muscle phenotype are discussed from the single fibre to the whole muscle level. [source]


Cystatin C colocalizes with amyloid-, and coimmunoprecipitates with amyloid-, precursor protein in sporadic inclusion-body myositis muscles

JOURNAL OF NEUROCHEMISTRY, Issue 6 2003
Gaetano Vattemi
Abstract Cystatin C (CC), an endogenous cysteine protease inhibitor, is accumulated within amyloid-, (A,) amyloid deposits in Alzheimer's disease (AD) brain and was proposed to play a role in the AD pathogenesis. Because the chemo-morphologic muscle phenotype of sporadic inclusion-body myositis (s-IBM) has several similarities with the phenotype of AD brain, including abnormal accumulation of A, deposits, we studied expression and localization of CC in muscle biopsies of 10 s-IBM, and 16 disease- and five normal-control muscle biopsies. Physical interaction of CC with amyloid-, precursor protein (A,PP) was studied by a combined immunoprecipitation/immunoblotting technique in the s-IBM muscle biopsies and in A,PP-overexpressing cultured human muscle fibers. In all s-IBM muscle biopsies, CC-immunoreactivity either colocalized with, or was adjacent to, the A,-immunoreactive inclusions in 80,90% of the vacuolated muscle fibers, mostly in non-vacuolated regions of their cytoplasm. Ultrastructurally, CC immunoreactivity-colocalized with A, on 6,10 nm amyloid-like fibrils and floccular material. By immunoblotting, CC expression was strongly increased in IBM muscle as compared to the controls. By immunoprecipitation/immunoblotting experiments, CC coimmunoprecipitated with A,PP, both in s-IBM muscle and in A,PP-overexpressing cultured normal human muscle fibers. Our studies (i) demonstrate for the first time that CC physically associates with A,PP, and (ii) suggest that CC may play a novel role in the s-IBM pathogenesis, possibly by influencing A,PP processing and A, deposition. [source]


Murine in vitro whole bladder model: A method for assessing phenotypic responses to pharmacologic stimuli and hypoxia

NEUROUROLOGY AND URODYNAMICS, Issue 4 2004
Joel C. Hutcheson
Abstract Aims Recent advances in genetic manipulation have allowed for over expression or deletion of selective genes in mice. This offers urologic investigators new means of understanding bladder function in the context of normal development or the response to outlet obstruction. It is important to correlate any genetic manipulations in mice with specific phenotypic properties such as voiding patterns, or muscle strip physiology. We describe a simple in vivo whole bladder preparation that may be used to study the phenotypic changes in bladder function. Methods Murine bladders were mounted on a 30 gauge needle and mounted in an organ chamber containing a physiologic buffer solution. Passive bladder properties were assessed with cystometry, and active contractile responses were measured in response to electrical field stimulation and agonists. The effects of hypoxia were also studied. Results Compliance in the murine bladder is dependent upon actin myosin interactions, and increased in the presence of calcium free buffer and EGTA. The sarcoplasmic reticulum plays a smaller role in the contraction of murine bladder than in other species. Murine bladder smooth muscle demonstrated a remarkable ability to withstand hypoxia. Conclusions This simple model can be adapted to help study the murine bladder smooth muscle phenotype under highly controlled circumstances. © 2004 Wiley-Liss, Inc. [source]


Molecular and muscle pathology in a series of caveolinopathy patients,

HUMAN MUTATION, Issue 1 2005
Luigi Fulizio
Abstract Mutations in the caveolin-3 gene (CAV3) cause limb girdle muscular dystrophy (LGMD) type 1C (LGMD1C) and other muscle phenotypes. We screened 663 patients with various phenotypes of unknown etiology, for caveolin-3 protein deficiency, and we identified eight unreported caveolin-deficient patients (from seven families) in whom four CAV3 mutations had been detected (two are unreported). Following our wide screening, we estimated that caveolinopathies are 1% of both unclassified LGMD and other phenotypes, and demonstrated that caveolin-3 protein deficiency is a highly sensitive and specific marker of primary caveolinopathy. This is the largest series of caveolinopathy families in whom the effect of gene mutations has been analyzed for protein level and phenotype. We showed that the same mutation could lead to heterogeneous clinical phenotypes and muscle histopathological changes. To study the role of the Golgi complex in the pathological pathway of misfolded caveolin-3 oligomers, we performed a histopathological study on muscle biopsies from caveolinopathy patients. We documented normal caveolin-3 immunolabeling at the plasmalemma in some regenerating fibers showing a proliferation of the Golgi complex. It is likely that caveolin-3 overexpression occurring in regenerating fibers (compared with caveolin-deficient adult fibers) may lead to an accumulation of misfolded oligomers in the Golgi and to its consequent proliferation. Hum Mutat 25:82,89, 2005. © 2004 Wiley-Liss, Inc. [source]