Home About us Contact | |||
Muscle Pairs (muscle + pair)
Selected AbstractsAn analysis of simplified muscle activation profile parameterizationPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2006Daniel Strobach This paper analyzes a simplified method for rough identification of muscle activation profiles of general motor tasks by means of dynamic optimization. Muscle activation profiles are parameterized with six parameters per muscle, using linear combinations of two smooth C, functions closely related to the GAUSSian distribution function used in stochastics and fuzzy control. The method is applied to a simplified subsystem of the human leg consisting of pelvis, thigh shank and foot, interconnected by planar joints at hip, knee and ankle. The system comprises one antagonistic muscle pair at the knee for knee flexion and extension (vastus intermedius and biceps femoris caput brevis). To simulate the swing phase of gait, rheonomic constraints are imposed on pelvis (translation and rotation), hip (rotation) and ankle (rotation). The optimization results show that, (1) the method is suitable to map typical muscle activation time histories that are recorded via EMG, (2) the method can reduce the number of design parameters and CPU-time consumption significantly in comparison to other parameterizations and (3) this reduction in CPU-time consumption additionally coinncides with an improved approximation quality to the target motion. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Corticospinal control of antagonistic muscles in the catEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2007Christian Ethier Abstract We recently suggested that movement-related inter-joint muscle synergies are recruited by selected excitation and selected release from inhibition of cortical points. Here we asked whether a similar cortical mechanism operates in the functional linking of antagonistic muscles. To this end experiments were done on ketamine-anesthetized cats. Intracortical microstimulation (ICMS) and intramuscular electromyographic recordings were used to find and characterize wrist, elbow and shoulder antagonistic motor cortical points. Simultaneous ICMS applied at two cortical points, each evoking activity in one of a pair of antagonistic muscles, produced co-contraction of antagonistic muscle pairs. However, we found an obvious asymmetry in the strength of reciprocal inhibition; it was always significantly stronger on physiological extensors than flexors. Following intravenous injection of a single bolus of strychnine, a cortical point at which only a physiological flexor was previously activated also elicited simultaneous activation of its antagonist. This demonstrates that antagonistic corticospinal neurons are closely grouped, or intermingled. To test whether releasing a cortical point from inhibition allows it to be functionally linked with an antagonistic cortical point, one of three GABAA receptor antagonists, bicuculline, gabazine or picrotoxin, was injected iontophoretically at one cortical point while stimulation was applied to an antagonistic cortical point. This coupling always resulted in co-contraction of the represented antagonistic muscles. Thus, antagonistic motor cortical points are linked by excitatory intracortical connections held in check by local GABAergic inhibition, with reciprocal inhibition occurring at the spinal level. Importantly, the asymmetry of cortically mediated reciprocal inhibition would appear significantly to bias muscle maps obtained by ICMS in favor of physiological flexors. [source] Time series analysis of jaw muscle contraction and tissue deformation during mastication in miniature pigsJOURNAL OF ORAL REHABILITATION, Issue 1 2004Z. J. Liu summary, Masticatory muscle contraction causes both jaw movement and tissue deformation during function. Natural chewing data from 25 adult miniature pigs were studied by means of time series analysis. The data set included simultaneous recordings of electromyography (EMG) from bilateral masseter (MA), zygomaticomandibularis (ZM) and lateral pterygoid muscles, bone surface strains from the left squamosal bone (SQ), condylar neck (CD) and mandibular corpus (MD), and linear deformation of the capsule of the jaw joint measured bilaterally using differential variable reluctance transducers. Pairwise comparisons were examined by calculating the cross-correlation functions. Jaw-adductor muscle activity of MA and ZM was found to be highly cross-correlated with CD and SQ strains and weakly with MD strain. No muscle's activity was strongly linked to capsular deformation of the jaw joint, nor were bone strains and capsular deformation tightly linked. Homologous muscle pairs showed the greatest synchronization of signals, but the signals themselves were not significantly more correlated than those of non-homologous muscle pairs. These results suggested that bone strains and capsular deformation are driven by different mechanical regimes. Muscle contraction and ensuing reaction forces are probably responsible for bone strains, whereas capsular deformation is more likely a product of movement. [source] Bilaterally coherent tremor resembling enhanced physiological tremor: Report of three cases,MOVEMENT DISORDERS, Issue 2 2002John D. O'Sullivan MD Abstract The contribution of the central nervous system to tremor pathogenesis is unclear. Poor side-to-side coherence in physiological, essential, and parkinsonian tremors suggests distinct bilateral generators. By contrast, significant bilateral coherence demonstrated in orthostatic tremor and in enhanced physiological tremor (EPT) in patients with persistent mirror movements favours single or closely linked bilateral oscillators. We describe three patients (aged 21,37 years) who developed unusual bilateral postural and kinetic tremors at 6,13 Hz resembling EPT. The tremor involved all limbs, and in two cases the face or jaw, in the absence of other significant neurological features. Significant side-to-side coherence was demonstrated in each case using cross-correlation of electromyographic recordings from homologous muscle pairs. We postulate that these unusual tremors originate from a single brainstem source or from bilateral oscillators closely linked at or below this level. © 2002 Movement Disorder Society [source] |