Home About us Contact | |||
Muscle Glycogen (muscle + glycogen)
Selected AbstractsEffects of short-term training on insulin sensitivity and skeletal muscle glucose metabolism in Standardbred horsesEQUINE VETERINARY JOURNAL, Issue S36 2006L. STEWART-HUNT Summary Reasons for performing study: Increased insulin sensitivity occurs after a period of exercise training, but the mechanisms underlying this training-associated increase in insulin action have not been investigated. Objective: To examine the effects of short-term endurance training (7 consecutive days) and a subsequent period of inactivity (5 days) on whole body insulin sensitivity and GLUT-4 protein and the activities of glycogen synthase (GS) and hexokinase (HK) in skeletal muscle. It was hypothesised that training would increase insulin sensitivity in association with increased GLUT-4 protein and activities of GS and HK, but that these changes would be transient, returning to baseline after 5 days of inactivity. Methods: Seven mature Standardbred horses completed training consisting of 7 consecutive days of 45 min of treadmill exercise at a speed that elicited 55% of pretraining maximal aerobic capacity (VO2peak). Insulin sensitivity was determined by rate of glucose disposal (M) during the last 60 min of a 120 min euglycaemic-hyperinsulinaemic clamp (EHC) performed before (-2 days) and at 1 and 6 days following training. VO2peak was measured before (UT) and after (TR) training and the period of inactivity (IA). Results: Training resulted in a 9% increase in mean VO2peak (P<0.05) that was maintained following inactivity (IA). Mean M values were more than 2-fold higher (P<0.05) in TR than in UT. Mean M was also higher (P<0.05) in IA when compared to UT. GLUT-4 protien abundancewas more than 10-fold higher in TR and IA (P<0.001) than in UT. Pre-EHC GS activity and GS fractional velocity were increased (P<0.05) in TR when compared to UT and IA. Pre-EHC HK activity was increased (P<0.05) in IA when compared to UT and TR. Muscle glycogen was 66% lower (P<0.05) in TR than in UT and IA. Conclusions: Short-term training resulted in increases in whole body insulin sensitivity, and GLUT-4 protein content and glycogen synthase activity in skeletal muscle. The enhancements in insulin sensitivity, GLUT-4 protein and glycogen synthase activity were still evident after 5 days of inactivity. Potential relevance: Insulin resistance in equids has been associated with obesity and predisposition to laminitis. Regular physical activity may mitigate risk of these conditions via enhancement of insulin sensitivity and/or control of bodyweight. [source] The regulation of muscle glycogen: the granule and its proteinsACTA PHYSIOLOGICA, Issue 4 2010T. E. Graham Abstract Despite decades of studying muscle glycogen in many metabolic situations, surprisingly little is known regarding its regulation. Glycogen is a dynamic and vital metabolic fuel that has very limited energetic capacity. Thus its regulation is highly complex and multifaceted. The stores in muscle are not homogeneous and there appear to be various metabolic pools. Each granule is capable of independent regulation and fundamental aspects of the regulation appear to be associated with a complex set of proteins (some are enzymes and others serve scaffolding roles) that associate both with the granule and with each other in a dynamic fashion. The regulation includes altered phosphorylation status and often translocation as well. The understanding of the roles and the regulation of glycogenin, protein phosphatase 1, glycogen targeting proteins, laforin and malin are in their infancy. These various processes appear to be the mechanisms that give the glycogen granule precise, yet dynamic regulation. [source] Impact of carbohydrate supplementation during endurance training on glycogen storage and performanceACTA PHYSIOLOGICA, Issue 2 2009L. Nybo Abstract Aim:, Glucose ingestion may improve exercise endurance, but it apparently also influences the transcription rate of several metabolic genes and it alters muscle metabolism during an acute exercise bout. Therefore, we investigated how chronic training responses are affected by glucose ingestion. Methods:, In previously untrained males performance and various muscular adaptations were evaluated before and after 8 weeks of supervised endurance training conducted either with (n = 8; CHO group) or without (n = 7; placebo) glucose supplementation. Results:, The two groups achieved similar improvements in maximal oxygen uptake and peak power output during incremental cycling (both parameters elevated by 17% on average) and both groups lost ,3 kg of fat mass during the 8 weeks of training. An equal reduction in respiratory exchange ratio (0.02 units) during submaximal exercise was observed in both groups. Beta-hydroxyacyl-CoA-dehydrogenase activity was increased in both groups, however, to a larger extent in the placebo group (45 ± 11%) than CHO (23 ± 9%, P < 0.05). GLUT-4 protein expression increased by 74 ± 14% in the placebo group and 45 ± 14% in CHO (both P < 0.05), while resting muscle glycogen increased (P < 0.05) to a larger extent in the placebo group (96 ± 4%) than CHO (33 ± 2%). Conclusion:, These results show that carbohydrate supplementation consumed during exercise training influences various muscular training adaptations, but improvements in cardiorespiratory fitness and reductions in fat mass are not affected. [source] Changes in skeletal muscle size, fibre-type composition and capillary supply after chronic venous occlusion in ratsACTA PHYSIOLOGICA, Issue 4 2008S. Kawada Abstract Aim:, We have previously shown that surgical occlusion of some veins from skeletal muscle results in muscle hypertrophy without mechanical overloading in the rat. The present study investigated the changes in muscle-fibre composition and capillary supply in hypertrophied muscles after venous occlusion in the rat hindlimb. Methods:, Sixteen male Wistar rats were randomly assigned into two groups: (i) sham operated (sham-operated group; n = 7); (ii) venous occluded for 2 weeks (2-week-occluded group; n = 9). At the end of the experimental period, specimens of the plantaris muscle were dissected from the hindlimbs and subjected to biochemical and histochemical analyses. Results:, Two weeks after the occlusion, both the wet weight of plantaris muscle relative to body weight and absolute muscle weight showed significant increases in the 2-week-occluded group (,15%) when compared with those in the sham-operated group. The concentrations of muscle glycogen and lactate were higher in the 2-week-occluded group, whereas staining intensity of muscle lipid droplets was lower in the 2-week-occluded group than those in the sham-operated group. The percentage of type I muscle fibre decreased, whereas that of type IIb fibre increased in the 2-week-occluded group when compared with the sham-operated group. Although the expression of vascular endothelial growth factor-188 mRNA increased, the number of capillaries around the muscle fibres tended to decrease (P = 0.07). Conclusion:, Chronic venous occlusion causes skeletal muscle hypertrophy with fibre-type transition towards faster types and changes in contents of muscle metabolites. [source] Acute signalling responses to intense endurance training commenced with low or normal muscle glycogenEXPERIMENTAL PHYSIOLOGY, Issue 2 2010Wee Kian Yeo We have previously demonstrated that well-trained subjects who completed a 3 week training programme in which selected high-intensity interval training (HIT) sessions were commenced with low muscle glycogen content increased the maximal activities of several oxidative enzymes that promote endurance adaptations to a greater extent than subjects who began all training sessions with normal glycogen levels. The aim of the present study was to investigate acute skeletal muscle signalling responses to a single bout of HIT commenced with low or normal muscle glycogen stores in an attempt to elucidate potential mechanism(s) that might underlie our previous observations. Six endurance-trained cyclists/triathletes performed a 100 min ride at ,70% peak O2 uptake (AT) on day 1 and HIT (8 × 5 min work bouts at maximal self-selected effort with 1 min rest) 24 h later (HIGH). Another six subjects, matched for fitness and training history, performed AT on day 1 then 1,2 h later, HIT (LOW). Muscle biopsies were taken before and after HIT. Muscle glycogen concentration was higher in HIGH versus LOW before the HIT (390 ± 28 versus 256 ± 67 ,mol (g dry wt),1). After HIT, glycogen levels were reduced in both groups (P < 0.05) but HIGH was elevated compared with LOW (229 ± 29 versus 124 ± 41 ,mol (g dry wt),1; P < 0.05). Phosphorylation of 5,AMP-activated protein kinase (AMPK) increased after HIT, but the magnitude of increase was greater in LOW (P < 0.05). Despite the augmented AMPK response in LOW after HIT, selected downstream AMPK substrates were similar between groups. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was unchanged for both groups before and after the HIT training sessions. We conclude that despite a greater activation AMPK phosphorylation when HIT was commenced with low compared with normal muscle glycogen availability, the localization and phosphorylation state of selected downstream targets of AMPK were similar in response to the two interventions. [source] Effects of glucose polymer with and without potassium and different diets on glycogen repletion after a treadmill exercise test in endurance horsesJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 11-12 2005T. M. Hess Glycogen repletion involves absorption of glucose and its uptake into the muscle cells through GLUT-4 transporters. In the muscle and adipose tissue GLUT,4 transporters facilitates the glucose transport in the presence of insulin and K+. Potassium supply has been shown to stimulate insulin secretion. This study tested the effects of a glucose polymer added with electrolytes containing potassium (GP+K) compared to a glucose polymer with electrolytes without potassium (GP-K) on glycogen repletion. Also it compared the effect of different diet adaptations on glycogen repletion. Six horses were fed a diet rich in sugar and starch (SS), and six horses a diet rich in fat and fibre (FF) for 6 months before the test. In a crossover designed study, 12 trained Arabian or Arabian cross horses were submitted to a glycogen depleting exercise test on the treadmill. After exercise stopped six horses were supplied with GP-K and six other horses supplied with GP+K, at a dose of 5 g/kg BW, and a rate of 1 g/kg BW/hour through naso-gastric gavage. Muscle biopsies were taken before, just after they stopped exercise, and 16 h after they had been supplied with glycogen replacing formulas, and analysed for muscle glycogen. Blood was taken before, after 3 h of exercise, after the stepwise exercise test, at 0, 1 and 4 h after exercise stopped and analysed for plasma glucose, insulin and [K+]. Muscle glycogen decreased from 516.41 ± 12.92 glucosyl units/kg dry weight muscle to 408.74 ± 12.92 glucosyl units/kg dry weight muscle (79%). Sixteen hours after the repletion protocol horses recovered their muscle glycogen to 458.53 ± 12.91 glucosyl units/kg dry weight muscle (89%). Plasma glucose had a glucose polymer by sampling effect (p = 0.013) and a feed by sampling effect (p = 0.022). Plasma glucose was higher in SS fed horses at 1 and 4 h after exercise. Plasma glucose was lower in GP+K supplied horses 4 h after exercise. Plasma insulin had a trend (p = 0.070) for a glucose polymer effect. No differences were found in muscle glycogen between the two GP treatments. Although the present results demonstrate that intensive nasogastric supplementation with glucose polymer can result in glycogen repletion approaching that following i.v. administration, the addition of potassium conferred no advantage. [source] Influence of dietary composition on growth and energy reserves in tench (Tinca tinca)JOURNAL OF APPLIED ICHTHYOLOGY, Issue 1 2001N. De Pedro The effects of different protein, lipid and carbohydrate diets on growth and energy storage in tench, Tinca tinca L., were studied. Over a 2-month period fish were fed four different diets: control, protein-enriched, carbohydrate-enriched and lipid-enriched. The best growth rates were obtained with the control and protein-enriched diets; the carbohydrate diet produced the worst results (lowest specific growth rate, weight gain, nutritional index and hepatosomatic index). These results suggest that it is not advisable to reduce dietary fish protein below 35%, and that it is not possible to obtain a protein-sparing effect of either lipids or carbohydrates, at least in our experimental conditions. The high-protein diet resulted in the storage of energy excess as muscle proteins and hepatic glycogen. Tench fed the high-carbohydrate diet stored carbohydrates as muscle glycogen and reduced plasma triglycerides. Finally, both liver and muscle lipid content were in positive correlation to dietary lipid. [source] Energy reserves during food deprivation and compensatory growth in juvenile roach: the importance of season and temperatureJOURNAL OF FISH BIOLOGY, Issue 1 2005P. L. M. Van Dijk The effect of 21 days of starvation, followed by a period of compensatory growth during refeeding, was studied in juvenile roach Rutilus rutilus during winter and summer, at 4, 20 and 27° C acclimation temperature and at a constant photoperiod (12L : 12D). Although light conditions were the same during summer and winter experiments and fish were acclimated to the same temperatures, there were significant differences in a range of variables between summer and winter. Generally winter fish were better prepared to face starvation than summer fish, especially when acclimated at a realistic cold season water temperature of 4° C. In winter, the cold acclimated fish had a two to three-fold larger relative liver size with an approximately double fractional lipid content, in comparison to summer animals at the same temperature. Their white muscle protein and glycogen concentration, but not their lipid content, were significantly higher. Season, independent of photoperiod or reproductive cycle, was therefore an important factor that determined the physiological status of the animal, and should generally be taken into account when fish are acclimated to different temperature regimes. There were no significant differences between seasons with respect to growth. Juvenile roach showed compensatory growth at all three acclimation temperatures with maximal rates of compensatory growth at 27° C. The replenishment of body energy stores, which were utilized during the starvation period, was responsible for the observed mass gain at 4° C. The contribution of the different energy resources (protein, glycogen and lipid) was dependent on acclimation temperature. In 20 and 27° C acclimated roach, the energetic needs during food deprivation were met by metabolizing white muscle energy stores. While the concentration of white muscle glycogen had decreased after the fasting period, the concentrations of white muscle lipid and protein remained more or less constant. The mobilization of protein and fat was revealed by the reduced size of the muscle after fasting, which was reflected in a decrease in condition factor. At 20° C, liver lipids and glycogen were mobilized, which caused a decrease both in the relative liver size and in the concentration of these substrates. Liver size was also decreased after fasting in the 4° C acclimated fish, but the substrate concentrations remained stable. This experimental group additionally utilized white muscle glycogen during food deprivation. Almost all measured variables were back at the control level within 7 days of refeeding. [source] Distinct effects of subcellular glycogen localization on tetanic relaxation time and endurance in mechanically skinned rat skeletal muscle fibresTHE JOURNAL OF PHYSIOLOGY, Issue 14 2009J. Nielsen In vitro experiments indicate a non-metabolic role of muscle glycogen in contracting skeletal muscles. Since the sequence of events in excitation,contraction (E,C) coupling is known to be located close to glycogen granules, at specific sites on the fibre, we hypothesized that the distinct compartments of glycogen have specific effects on muscle fibre contractility and fatigability. Single skeletal muscle fibres (n= 19) from fed and fasted rats were mechanically skinned and divided into two segments. In one segment glycogen localization and volume fraction were estimated by transmission electron microscopy. The other segment was mechanically skinned and, in the presence of high and constant myoplasmic ATP and PCr, electrically stimulated (10 Hz, 0.8 s every 3 s) eliciting repeated tetanic contractions until the force response was decreased by 50% (mean ±s.e.m., 81 ± 16, range 22,252 contractions). Initially the total myofibrillar glycogen volume percentage was 0.46 ± 0.07%, with 72 ± 3% in the intermyofibrillar space and 28 ± 3% in the intramyofibrillar space. The intramyofibrillar glycogen content was positively correlated with the fatigue resistance capacity (r2= 0.32, P= 0.02). Intermyofibrillar glycogen was inversely correlated with the half-relaxation time in the unfatigued tetanus (r2= 0.25, P= 0.03). These results demonstrate for the first time that two distinct subcellular populations of glycogen have different roles in contracting single muscle fibres under conditions of high myoplasmic ATP. [source] Physiological responses of juvenile wedge sole Dicologoglossa cuneata (Moreau) to high stocking densityAQUACULTURE RESEARCH, Issue 7 2009Marcelino Herrera Abstract Physiological responses to a high stocking density were tested in juvenile wedge sole Dicologoglossa cuneata (Moreau). Fish were kept at low (1 kg m,2), medium (3 kg m,2) and high (9 kg m,2) stocking densities for 22 days. No differences in the weight, length, survival and hepatosomatic index were observed among treatments. Basal plasma cortisol and osmolality were found to be directly and positively related to stocking density. A mild increase in plasma glucose was seen at medium density, and plasma protein was elevated at medium and high densities. The liver glucose and glycogen content was inversely related to stocking density. The liver triglyceride level was significantly elevated at the highest density, and the ,-amino acid content decreased at the highest density. In muscle, glucose levels were significantly higher in fish kept at the lowest density; the ,-amino acid content was elevated in fish kept at high density. In conclusion, plasma cortisol levels indicated an increasing stress level depending on the culture density, but significant changes in energy reserves did not occur in tissue (mainly liver and muscle glycogen and glucose reserves were significantly affected). [source] Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell).AQUACULTURE RESEARCH, Issue 2 2003Abstract The ability of silver perch (Bidyanus bidyanus) to digest and utilize dietary starch or starch breakdown products was investigated. For experiment 1 the ability of silver perch (2.7 ± 0.01 g) to digest wheat starch at two dietary inclusion levels (30% or 60%), each at four levels of gelatinization (0%, 25%, 50% or 80%), was investigated over a 31-day period. For experiment 2, the ability of silver perch (15.9± 0.25 g) to digest wheat starch, dextrin (at three levels of dextrinization), maltose, glucose and pea starch, all at the 30% inclusion level, was investigated over a 41-day period. Water temperature for both experiments was 25 ± 1 °C. Apparent digestibility coefficients (ADCs) for starch, dry matter (DM) and energy were affected by both degree of gelatinization (80% > 50% > 25% = 0%) and inclusion level (30% > 60%). Specific growth rate (SGR) was unaffected by the inclusion of 30% starch; however, it was reduced at the 60% starch content level. Degree of gelatinization had no effect on SGR. For experiment 2, there were significant differences between carbohydrate and DM ADCs for the test ingredients. The carbohydrate, DM and energy ADCs were ranked as follows: dextrin (Fieldose 9) = dextrin (Fieldose 17) = dextrin (Fieldose 30) = gelatinized wheat starch = maltose = glucose > raw wheat starch > raw pea starch. The protein ADC of the diets, postprandial plasma glucose concentration and SGR were all unaffected by ingredient type. For both experiments, HSI tended to increase with carbohydrate inclusion. Liver glycogen concentrations were also elevated, but muscle glycogen and liver and muscle triacylglycerol concentrations were unaffected. Digestibility of starch by silver perch is clearly affected by inclusion content and processing. [source] |