Home About us Contact | |||
Muscle Biopsy Specimens (muscle + biopsy_specimen)
Selected AbstractsGrowth Hormone Administration and Exercise Effects on Muscle Fiber Type and Diameter in Moderately Frail Older PeopleJOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 7 2001James V. Hennessey MD OBJECTIVE: Reduced muscle mass and strength are characteristic findings of growth hormone deficiency (GHD) and aging. We evaluated measures of muscle strength, muscle fiber type, and cross sectional area in response to treatment with recombinant human growth hormone (rhGH) with or without a structured resistance exercise program in frail older subjects. DESIGN: Placebo-controlled, randomized, double blind trial. SETTING: Outpatient clinical research center at an urban university-affiliated teaching hospital. PARTICIPANTS: Thirty-one consenting older subjects (mean age 71.3 ± 4.5 years) recruited as a subset of a larger project evaluating rhGH and exercise in older people, who underwent 62 quadricep-muscle biopsies. INTERVENTION: Random assignment to a 6-month course of one of four protocols: rhGH administered subcutaneously daily at bedtime, rhGH and a structured resistance exercise program, structured resistance exercise with placebo injections, or placebo injections only. MEASUREMENTS: Muscle biopsy specimens were obtained from the vastus lateralis muscle. Isokinetic dynamometry strength tests were used to monitor individual progress and to adjust the weights used in the exercise program. Serum insulin-like growth factor-I (IGF-I) was measured and body composition was measured using a Hologic QDR 1000W dual X-ray densitometer. RESULTS: The administration of rhGH resulted in significant increase in circulating IGF-I levels in the individuals receiving rhGH treatment. Muscle strength increased significantly in both the rhGH/exercise (+55.6%, P = .0004) as well as the exercise alone (+47.8%, P = .0005) groups. There was a significant increase in the proportion of type 2 fibers between baseline and six months in the combined rhGH treated subjects versus those not receiving rhGH (P = .027). CONCLUSIONS: Our results are encouraging in that they suggest an effect of growth hormone on a specific aging-correlated deficit. IGF-I was increased by administrating rhGH and muscle strength was increased by exercise. The administration of rhGH to frail older individuals in this study resulted in significant changes in the proportions of fiber types. Whether changes in fiber cross-sectional area or absolute number occur with long-term growth hormone administration requires further study. [source] A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathyARTHRITIS & RHEUMATISM, Issue 9 2010Lisa Christopher-Stine Objective Myofiber necrosis without prominent inflammation is a nonspecific finding in patients with dystrophies and toxic or immune-mediated myopathies. However, the etiology of a necrotizing myopathy is often obscure, and the question of which patients would benefit from immunosuppression remains unanswered. The aim of this study was to identify novel autoantibodies in patients with necrotizing myopathy. Methods Muscle biopsy specimens and serum samples were available for 225 patients with myopathy. Antibody specificities were determined by performing immunoprecipitations from 35S-methionine,labeled HeLa cell lysates. Selected biopsy specimens were stained for membrane attack complex, class I major histocompatibility complex (MHC), and endothelial cell marker CD31. Results Muscle biopsy specimens from 38 of 225 patients showed predominantly myofiber necrosis. Twelve of these patients had a known autoantibody association with or other etiology for their myopathy. Sixteen of the remaining 26 sera immunoprecipitated 200-kd and 100-kd proteins; this specificity was observed in only 1 of 187 patients without necrotizing myopathy. Patients with the anti-200/100 autoantibody specificity had proximal weakness (100%), high creatine kinase levels (mean maximum 10,333 IU/liter), and an irritable myopathy on electromyography (88%). Sixty-three percent of these patients had been exposed to statins prior to the onset of weakness. All patients responded to immunosuppressive therapy, and many experienced a relapse of weakness when the medication was tapered. Immunohistochemical studies showed membrane attack complex on small blood vessels in 6 of 8 patients and on the surface of non-necrotic myofibers in 4 of 8 patients. Five of 8 patients had abnormal capillary morphology, and 4 of 8 patients expressed class I MHC on the surface of non-necrotic myofibers. Conclusion An anti,200/100-kd specificity defines a subgroup of patients with necrotizing myopathy who previously were considered to be autoantibody negative. We propose that these patients have an immune-mediated myopathy that is frequently associated with prior statin use and should be treated with immunosuppressive therapy. [source] Vitamin D Receptor Expression in Human Muscle Tissue Decreases With Age,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2004HA Bischoff-Ferrari Abstract Intracellular 1,25-dihydroxyvitamin D receptor (VDR) is expressed in human skeletal muscle tissue. However, it is unknown whether VDR expression in vivo is related to age or vitamin D status, or whether VDR expression differs between skeletal muscle groups. Introduction: We investigated these factors and their relation to 1,25-dihydroxyvitamin D receptor (VDR) expression in freshly removed human muscle tissue. Materials and Methods: We investigated biopsy specimens of the gluteus medius taken at surgery from 20 female patients undergoing total hip arthroplasty (mean age, 71.6 ± 14.5; 72% > 65 years) and biopsy specimens of the transversospinalis muscle taken at surgery from 12 female patients with spinal operations (mean age, 55.2 ± 19.6; 28% > 65 years). The specimens were obtained by immunohistological staining of the VDR using a monoclonal rat antibody to the VDR (Clone no. 9A7). Quantitative VDR expression (number of VDR positive nuclei) was assessed by counting 500 nuclei per specimen and person. Serum concentrations of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D were assessed at day of admission to surgery. Results: All muscle biopsy specimens stained positive for VDR. In the univariate analyses, increased age was associated with decreased VDR expression (r = 0.5: p = 0.004), whereas there were no significant correlations between VDR expression and 25-hydroxyvitamin D or 1,25-dihydroxyvitamin D levels. VDR expression did not differ between patients with hip and spinal surgery. In the multivariate analysis, older age was a significant predictor of decreased VDR expression after controlling biopsy location (gluteus medius or the transversospinalis muscle), and 25-hydroxyvitamin D levels (linear regression analysis: ,-estimate = ,2.56; p = 0.047). Conclusions: Intranuclear immunostaining of the VDR was present in muscle biopsy specimens of all orthopedic patients. Older age was significantly associated with decreased VDR expression, independent of biopsy location and serum 25-hydroxyvitamin D levels. [source] Inherited myopathy of great DanesJOURNAL OF SMALL ANIMAL PRACTICE, Issue 5 2006A. Lujan Feliu-Pascual A hereditary, non-inflammatory myopathy occurring in young great Danes with distinctive histological features in muscle biopsy specimens is reviewed. Onset of clinical signs is usually before one year of age and both sexes are affected. Clinical signs are characterised by exercise intolerance, muscle wasting, and an exercise-induced tremor. Although most affected dogs have a severe form of the disease, occasional dogs may have a less pronounced form and survive into adulthood with an acceptable quality of life. Litters containing affected puppies are born to clinically unaffected parents, and an autosomal recessive pattern of inheritance is likely. All recorded cases have had fawn or brindle coat coloration. Elevated serum creatinine kinase concentrations and spontaneous electrical activity in skeletal muscles are frequently found. While originally reported (Targett and others 1994) as a central core myopathy in this breed, the histochemical characteristics of the distinct cytoarchitectural structures differ from those of the well-characterised central core myopathy in human beings. In fact, these structures differ from any known myopathy in human beings and likely represents a unique non-inflammatory myopathy affecting dogs. Until this myopathy is characterised further, the name inherited myopathy in great Danes is suggested. [source] Muscular Dystrophy in female DogsJOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 3 2001G. Diane Shelton The most common form of muscular dystrophy in dogs and humans is caused by mutations in the dystrophin gene. The dystrophin gene is located on the X chromosome, and, therefore, disease-causing mutations in dystrophin occur most often in males. Therefore, females with dystrophin deficiency or other forms of muscular dystrophy may be undiagnosed or misdiagnosed. Immunohisto-chemistry was used to analyze dystrophin and a number of other muscle proteins associated with muscular dystrophy in humans, including sarcoglycans and laminin ,2, in muscle biopsy specimens from 5 female dogs with pathologic changes consistent with muscular dystrophy. The female dogs were presented with a variety of clinical signs including generalized weakness, muscle wasting, tremors, exercise intolerance, gait abnormalities, and limb deformity. Serum creatine kinase activity was variably high. One dog had no detectable dystrophin in the muscle; another was mosaic, with some fibers normal and others partly dystrophin-deficient. A 3rd dog had normal dystrophin but no detectable laminin ,2. Two dogs could not be classified. This study demonstrates the occurrence of dystrophin- and laminin ,2-associated muscular dystrophy and the difficulty in clinical diagnosis of these disorders in female dogs. [source] Annexin expression in inflammatory myopathiesMUSCLE AND NERVE, Issue 1 2004Stefan Probst-Cousin MD Abstract The pathogenesis of the inflammatory myopathies is still unclear, making their treatment largely empirical. Improved understanding of the molecular mechanisms of inflammatory muscle injury may, however, lead to the development of more specific immunotherapies. To elucidate a possible pathogenic contribution of calcium-binding proteins such as the annexins, we immunohistochemically investigated muscle biopsy specimens from patients with dermatomyositis (10 cases), polymyositis (9 cases), and inclusion-body myositis (4 cases), compared to control cases comprising sarcoid myopathy (3 cases), Duchenne muscular dystrophy (DMD; 4 cases), and normal muscle (3 cases). We found expression of annexins A1, A2, A4, and A6 in the vascular endothelium of all cases. Myofibers expressed annexins A5, A6, and A7 diffusely and weakly in the cytosol, whereas annexins A5 and A7 were also particularly localized to the sarcolemma. In the inflammatory myopathies, in areas of myonecrosis in DMD, and in granulomatous lesions of sarcoid myopathy, reactivity of annexins A1, A2, A4, A5, and A6 was observed in macrophages and T-lymphocytes. Whereas the latter annexins appear to be nonspecific indicators of activation, annexin A1 upregulation may represent endogenous anti-inflammatory mechanisms that merit further investigation. Muscle Nerve 30: 102,110, 2004 [source] Interferon-stimulated gene 15 (ISG15) conjugates proteins in dermatomyositis muscle with perifascicular atrophyANNALS OF NEUROLOGY, Issue 1 2010Mohammad Salajegheh MD Objective We investigated interferon-stimulated gene 15 (ISG15), a poorly understood ubiquitin-like modifier, and its enzymatic pathway in dermatomyositis (DM), an autoimmune disease primarily involving muscle and skin. Methods We generated microarray data measuring transcript abundance for approximately 18,000 genes in each of 113 human muscle biopsy specimens, and studied biopsy specimens and cultured skeletal muscle using immunohistochemistry, immunoblotting proteomics, real-time quantitative polymerase chain reaction, and laser-capture microdissection. Results Transcripts encoding ISG15-conjugation pathway proteins were markedly upregulated in DM with perifascicular atrophy (DM-PFA) muscle (ISG15 339-fold, HERC5 62-fold, and USP18 68-fold) compared with 99 non-DM samples. Combined analysis with publicly available microarray datasets showed that >50-fold ISG15 transcript elevation had 100% sensitivity and specificity for 28 biopsies from adult DM-PFA and juvenile DM patients compared with 199 muscle samples from other muscle diseases. Free ISG15 and ISG15-conjugated proteins were only found on immunoblots from DM-PFA muscle. Cultured human skeletal muscle exposed to type 1 interferons produced similar transcripts and ISG15 protein and conjugates. Laser-capture microdissection followed by proteomic analysis showed deficiency of titin in DM perifascicular atrophic myofibers. Interpretation A large-scale microarray study of muscle samples demonstrated that among a diverse group of muscle diseases DM was uniquely associated with upregulation of the ISG15 conjugation pathway. Exposure of human skeletal muscle cell culture to type 1 interferons produced a molecular picture highly similar to that seen in human DM muscle. Perifascicular atrophic myofibers in DM were deficient in a number of skeletal muscle proteins including titin. ANN NEUROL 2010;67:53,63 [source] Expression of the dermatomyositis autoantigen Mi-2 in regenerating muscleARTHRITIS & RHEUMATISM, Issue 12 2009Andrew L. Mammen Objective Autoantibodies against the chromatin remodeler Mi-2 are found in a distinct subset of patients with dermatomyositis (DM). Previous quantitative immunoblotting experiments demonstrated that Mi-2 protein levels are up-regulated in DM muscle. This study was undertaken to define the population of cells expressing high levels of Mi-2 in DM muscle and to explore the regulation and functional role of Mi-2 during muscle regeneration. Methods The expression of Mi-2 was analyzed by immunofluorescence microscopy in human muscle biopsy specimens. In an experimental mouse model, cardiotoxin was used to induce muscle injury and repair, and expression of Mi-2 during muscle regeneration was studied in this model by immunofluorescence and immunoblotting analyses. In addition, a cell culture system of muscle differentiation was utilized to artificially modulate Mi-2 levels during proliferation and differentiation of myoblasts. Results In human DM muscle tissue, increased Mi-2 expression was found preferentially in the myofibers within fascicles affected by perifascicular atrophy, particularly in the centralized nuclei of small perifascicular muscle fibers expressing markers of regeneration. In injured mouse muscle tissue, Mi-2 levels were dramatically and persistently up-regulated during muscle regeneration in vivo. Premature silencing of Mi-2 with RNA interference in vitro resulted in accelerated myoblast differentiation. Conclusion Expression of Mi-2 is markedly up-regulated during muscle regeneration in a mouse model of muscle injury and repair. It is also up-regulated in human DM myofibers expressing markers of regeneration. Results of the in vitro studies indicate that this protein may play a role in modulating the kinetics of myoblast differentiation. Our findings thus suggest that high levels of Mi-2 expression in muscle biopsy tissue from patients with DM reflect the presence of incompletely differentiated muscle cells. [source] |