Murine Arthritis (murine + arthritis)

Distribution by Scientific Domains


Selected Abstracts


Synovial mast cells: role in acute and chronic arthritis

IMMUNOLOGICAL REVIEWS, Issue 1 2007
Peter A. Nigrovic
Summary:, Mast cells reside in the normal synovium and increase strikingly in number in rheumatoid arthritis and other joint diseases. Given the broad spectrum of activity of this lineage, it has for decades been considered probable that mast cells are involved in the pathophysiology of synovitis. Recent work in murine arthritis has substantiated this suspicion, showing that mast cells can contribute importantly to the initiation of inflammatory arthritis. However, the role of the greatly expanded population of synovial mast cells in established arthritis remains unknown. Here we review the current understanding of mast cell function in acute arthritis and consider the potentially important influence of this cell on key processes within the chronically inflamed synovium, including leukocyte recruitment and activation, fibroblast proliferation, angiogenesis, matrix remodeling, and injury to collagen and bone. We also consider recent evidence supporting an immunomodulatory or anti-inflammatory role for mast cells as well as pharmacologic approaches to the mast cell as a therapeutic target in inflammatory arthritis. [source]


R-spondin 1 protects against inflammatory bone damage during murine arthritis by modulating the Wnt pathway

ARTHRITIS & RHEUMATISM, Issue 8 2010
Gerhard Krönke
Objective During the course of different musculoskeletal diseases, joints are progressively damaged by inflammatory, infectious, or mechanical stressors, leading to joint destruction and disability. While effective strategies to inhibit joint inflammation, such as targeted cytokine-blocking therapy, have been developed during the last decade, the molecular mechanisms of joint damage are still poorly understood. This study was undertaken to investigate the role of the Wnt pathway modulator R-Spondin 1 (RSpo1) in protecting bone and cartilage in a mouse model of arthritis. Methods Tumor necrosis factor , (TNF,),transgenic mice were treated with vehicle or Rspo1. Mice were evaluated for signs of arthritis, and histologic analysis of the hind paws was performed. Moreover, we determined the effect of Rspo1 on Wnt signaling activity and osteoprotegerin (OPG) expression in murine primary osteoblasts. Results The secreted Wnt pathway modulator RSpo1 was highly effective in preserving the structural integrity of joints in a TNF,-transgenic mouse model of arthritis by protecting bone and cartilage from inflammation-related damage. RSpo1 antagonized the Wnt inhibitor Dkk-1 and modulated Wnt signaling in mouse mesenchymal cells. In osteoblasts, RSpo1 induced differentiation and expression of OPG, thereby inhibiting osteoclastogenesis in vitro. In vivo, RSpo1 promoted osteoblast differentiation and bone formation while blocking osteoclast development, thereby contributing to the integrity of joints during inflammatory arthritis. Conclusion Our results demonstrate the therapeutic potential of RSpo1 as an anabolic agent for the preservation of joint architecture. [source]


The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis

ARTHRITIS & RHEUMATISM, Issue 7 2010
Amalia P. Raptopoulou
Objective T cells play a major role in the pathogenesis of rheumatoid arthritis (RA). The programmed death 1 (PD-1)/programmed death ligand 1 (PDL-1) pathway is involved in peripheral tolerance through inhibition of T cells at the level of synovial tissue. The aim of this study was to examine the role of PD-1/PDL-1 in the regulation of human and murine RA. Methods In synovial tissue and synovial fluid (SF) mononuclear cells from patients with RA, expression of PD-1/PDL-1 was examined by immunohistochemistry and flow cytometry, while PD-1 function was assessed in RA peripheral blood (PB) T cells after stimulation of the cells with anti-CD3 and PDL-1.Fc to crosslink PD-1. Collagen-induced arthritis (CIA) was induced in PD-1,/, C57BL/6 mice, and recombinant PDL-1.Fc was injected intraperitoneally to activate PD-1 in vivo. Results RA synovium and RA SF were enriched with PD-1+ T cells (mean ± SEM 24 ± 5% versus 4 ± 1% in osteoarthritis samples; P = 0.003) and enriched with PDL-1+ monocyte/macrophages. PD-1 crosslinking inhibited both T cell proliferation and production of interferon-, (IFN,) in RA patients; PB T cells incubated with RA SF, as well as SF T cells from patients with active RA, exhibited reduced PD-1,mediated inhibition of T cell proliferation at suboptimal, but not optimal, concentrations of PDL-1.Fc. PD-1,/, mice demonstrated increased incidence of CIA (73% versus 36% in wild-type mice; P < 0.05) and greater severity of CIA (mean maximum arthritis score 5.0 versus 2.3 in wild-type mice; P = 0.040), and this was associated with enhanced T cell proliferation and increased production of cytokines (IFN, and interleukin-17) in response to type II collagen. PDL-1.Fc treatment ameliorated the severity of CIA and reduced T cell responses. Conclusion The negative costimulatory PD-1/PDL-1 pathway regulates peripheral T cell responses in both human and murine RA. PD-1/PDL-1 in rheumatoid synovium may represent an additional target for immunomodulatory therapy in RA. [source]


Gadd45, deficiency in rheumatoid arthritis: Enhanced synovitis through JNK signaling

ARTHRITIS & RHEUMATISM, Issue 11 2009
Camilla I. Svensson
Objective JNK-mediated cell signaling plays a critical role in matrix metalloproteinase (MMP) expression and joint destruction in rheumatoid arthritis (RA). Gadd45,, which is an NF-,B,regulated gene, was recently identified as an endogenous negative regulator of the JNK pathway, since it could block the upstream kinase MKK-7. This study was carried out to evaluate whether low Gadd45, expression in RA enhances JNK activation and overproduction of MMPs in RA, and whether Gadd45, deficiency increases arthritis severity in passive K/BxN murine arthritis. Methods Activation of the NF-,B and JNK pathways and Gadd45, expression were analyzed in human synovium and fibroblast-like synoviocytes (FLS) using quantitative polymerase chain reaction, immunoblotting, immunohistochemistry, electrophoretic mobility shift assay, and luciferase reporter constructs. Gadd45,,/, and wild-type mice were evaluated in the K/BxN serum transfer model of inflammatory arthritis, and clinical signs of arthritis, osteoclast formation, and bone erosion were assessed. Results Expression levels of the Gadd45, gene and protein were unexpectedly low in human RA synovium despite abundant NF-,B activity. Forced Gadd45, expression in human FLS attenuated tumor necrosis factor,induced signaling through the JNK pathway, reduced the activation of activator protein 1, and decreased the expression of MMP genes. Furthermore, Gadd45, deficiency exacerbated K/BxN serum,induced arthritis in mice, dramatically increased signaling through the JNK pathway, elevated MMP3 and MMP13 gene expression in the mouse joints, and increased the synovial inflammation and number of osteoclasts. Conclusion Deficient Gadd45, expression in RA can contribute to activation of JNK, exacerbate clinical arthritis, and augment joint destruction. This process can be mitigated by enhancing Gadd45, expression or by inhibiting the activity of JNK or its upstream regulator, MKK-7. [source]


Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes

ARTHRITIS & RHEUMATISM, Issue 8 2008
Maroun Khoury
Objective Blocking tumor necrosis factor (TNF) effectively inhibits inflammation and joint damage in rheumatoid arthritis (RA), but 40% of RA patients respond only transiently or not at all to the current anti-TNF biotherapies. The purpose of this study was to develop an alternative targeted therapy for this subgroup of RA patients. As proof of concept, we tested the efficiency of an RNA interference (RNAi),based intervention that targets proinflammatory cytokines in suppressing murine collagen-induced arthritis (CIA). Methods Two synthetic short interfering RNA (siRNA) sequences were designed for each of the proinflammatory cytokines interleukin-1 (IL-1), IL-6, and IL-18. Their silencing specificity was assessed according to lipopolysaccharide-induced messenger RNA expression in J774.1 mouse macrophages as compared with control siRNA. For in vivo administration, siRNA were formulated as lipoplexes with the RPR209120/DOPE liposome and a carrier DNA and were injected intravenously (0.5 mg/kg) into DBA/1 mice with CIA. Results Weekly injections of anti,IL-1, anti,IL-6, or anti,IL-18 siRNA-based lipoplexes significantly reduced the incidence and severity of arthritis, abrogating joint swelling and destruction of cartilage and bone, both in the preventative and the curative settings. The most striking therapeutic effect was observed when the 3 siRNA were delivered in combination. The siRNA lipoplex cocktail reduced all pathologic features of RA, including inflammation, joint destruction, and the Th1 response, and overall parameters of RA were improved as compared with anti-TNF siRNA lipoplex,based treatment. Conclusion Our results present a novel option for in vivo RNAi-based antiinflammatory immunotherapy. Our findings indicate that intravenous administration of a lipoplex cocktail containing several anticytokine siRNA is a promising novel antiinflammatory therapy for RA, as well as a useful and simple tool for understanding the pathophysiology of RA and for evaluating new therapeutic candidates. [source]