Motor Neuron Degeneration (motor + neuron_degeneration)

Distribution by Scientific Domains


Selected Abstracts


Vascular endothelial growth factor prevents G93A-SOD1-induced motor neuron degeneration

DEVELOPMENTAL NEUROBIOLOGY, Issue 13 2009
J. Simon Lunn
Abstract Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder characterized by selective loss of motor neurons (MNs). Twenty percent of familial ALS cases are associated with mutations in Cu2+/Zn2+ superoxide dismutase (SOD1). To specifically understand the cellular mechanisms underlying mutant SOD1 toxicity, we have established an in vitro model of ALS using rat primary MN cultures transfected with an adenoviral vector encoding a mutant SOD1, G93A-SOD1. Transfected cells undergo axonal degeneration and alterations in biochemical responses characteristic of cell death such as activation of caspase-3. Vascular endothelial growth factor (VEGF) is an angiogenic and neuroprotective growth factor that can increase axonal outgrowth, block neuronal apoptosis, and promote neurogenesis. Decreased VEGF gene expression in mice results in a phenotype similar to that seen in patients with ALS, thus linking loss of VEGF to the pathogenesis of MN degeneration. Decreased neurotrophic signals prior to and during disease progression may increase MN susceptibility to mutant SOD1-induced toxicity. In this study, we demonstrate a decrease in VEGF and VEGFR2 levels in the spinal cord of G93A-SOD1 ALS mice. Furthermore, in isolated MN cultures, VEGF alleviates the effects of G93A-SOD1 toxicity and neuroprotection involves phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling. Overall, these studies validate the usefulness of VEGF as a potential therapeutic factor for the treatment of ALS and give valuable insight into the responsible signaling pathways and mechanisms involved. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source]


The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis

JOURNAL OF NEUROCHEMISTRY, Issue 4 2008
Natalie A. Prow
Abstract Astrocytes remove glutamate from the synaptic cleft via specific transporters, and impaired glutamate reuptake may promote excitotoxic neuronal injury. In a model of viral encephalomyelitis caused by neuroadapted Sindbis virus (NSV), mice develop acute paralysis and spinal motor neuron degeneration inhibited by the AMPA receptor antagonist, NBQX. To investigate disrupted glutamate homeostasis in the spinal cord, expression of the main astroglial glutamate transporter, GLT-1, was examined. GLT-1 levels declined in the spinal cord during acute infection while GFAP expression was preserved. There was simultaneous production of inflammatory cytokines at this site, and susceptible animals treated with drugs that blocked IL-1, release also limited paralysis and prevented the loss of GLT-1 expression. Conversely, infection of resistant mice that develop mild paralysis following NSV challenge showed higher baseline GLT-1 levels as well as lower production of IL-1, and relatively preserved GLT-1 expression in the spinal cord compared to susceptible hosts. Finally, spinal cord GLT-1 expression was largely maintained following infection of IL-1,-deficient animals. Together, these data show that IL-1, inhibits astrocyte glutamate transport in the spinal cord during viral encephalomyelitis. They provide one of the strongest in vivo links between innate immune responses and the development of excitotoxicity demonstrated to date. [source]


Glia cells in amyotrophic lateral sclerosis: New clues to understanding an old disease?

MUSCLE AND NERVE, Issue 6 2007
Clemens Neusch MD
Abstract In classic neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), the pathogenic concept of a cell-autonomous disease of motor neurons has been challenged increasingly in recent years. Macro- and microglial cells have come to the forefront for their role in multistep degenerative processes in ALS and respective disease models. The activation of astroglial and microglial cells occurs early in the pathogenesis of the disease and seems to greatly influence disease onset and promotion. The role of oligodendrocytes and Schwann cells remains elusive. In this review we highlight the impact of nonneuronal cells in ALS pathology. We discuss diverse glial membrane proteins that are necessary to control neuronal activity and neuronal cell survival, and summarize the contribution of these proteins to motor neuron death in ALS. We also describe recently discovered glial mechanisms that promote motor neuron degeneration using state-of-the-art genetic mouse technology. Finally, we provide an outlook on the extent to which these new pathomechanistic insights may offer novel therapeutic approaches. Muscle Nerve, 2007 [source]


Gene-based treatment of motor neuron diseases,

MUSCLE AND NERVE, Issue 3 2006
Thais Federici PhD
Abstract Motor neuron diseases (MND), such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), are progressive neurodegenerative diseases that share the common characteristic of upper and/or lower motor neuron degeneration. Therapeutic strategies for MND are designed to confer neuroprotection, using trophic factors, anti-apoptotic proteins, as well as antioxidants and anti-excitotoxicity agents. Although a large number of therapeutic clinical trials have been attempted, none has been shown satisfactory for MND at this time. A variety of strategies have emerged for motor neuron gene transfer. Application of these approaches has yielded therapeutic results in cell culture and animal models, including the SOD1 models of ALS. In this study we describe the gene-based treatment of MND in general, examining the potential viral vector candidates, gene delivery strategies, and main therapeutic approaches currently attempted. Finally, we discuss future directions and potential strategies for more effective motor neuron gene delivery and clinical translation. Muscle Nerve, 2005 [source]


FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis

ANNALS OF NEUROLOGY, Issue 6 2010
Han-Xiang Deng MD
Objective Amyotrophic lateral sclerosis (ALS) is a fatal disorder of motor neuron degeneration. Most cases of ALS are sporadic (SALS), but about 5 to 10% of ALS cases are familial (FALS). Recent studies have shown that mutations in FUS are causal in approximately 4 to 5% of FALS and some apparent SALS cases. The pathogenic mechanism of the mutant FUS-mediated ALS and potential roles of FUS in non-FUS ALS remain to be investigated. Methods Immunostaining was performed on postmortem spinal cords from 78 ALS cases, including SALS (n = 52), ALS with dementia (ALS/dementia, n = 10), and FALS (n = 16). In addition, postmortem brains or spinal cords from 22 cases with or without frontotemporal lobar degeneration were also studied. In total, 100 cases were studied. Results FUS-immunoreactive inclusions were observed in spinal anterior horn neurons in all SALS and FALS cases, except for those with SOD1 mutations. The FUS-containing inclusions were also immunoreactive with antibodies to TDP43, p62, and ubiquitin. A fraction of tested FUS antibodies recognized FUS inclusions, and specific antigen retrieval protocol appeared to be important for detection of the skein-like FUS inclusions. Interpretation Although mutations in FUS account for only a small fraction of FALS and SALS, our data suggest that FUS protein may be a common component of the cellular inclusions in non-SOD1 ALS and some other neurodegenerative conditions, implying a shared pathogenic pathway underlying SALS, non-SOD1 FALS, ALS/dementia, and related disorders. Our data also indicate that SOD1-linked ALS may have a pathogenic pathway distinct from SALS and other types of FALS. ANN NEUROL 2010;67:739,748 [source]


Current hypotheses for the underlying biology of amyotrophic lateral sclerosis,

ANNALS OF NEUROLOGY, Issue S1 2009
Jeffrey D. Rothstein MD
The mechanisms involved in selective motor neuron degeneration in amyotrophic lateral sclerosis remain unknown more than 135 years after the disease was first described. Although most cases have no known cause, mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) have been implicated in a fraction of familial cases of the disease. Transgenic mouse models with mutations in the SOD1 gene and other ALS genes develop pathology reminiscent of the disorder, including progressive death of motor neurons, and have provided insight into the pathogenesis of the disease but have consistently failed to predict therapeutic efficacy in humans. However, emerging research has demonstrated that mutations and pathology associated with the TDP-43 gene and protein may be more common than SOD1 mutations in familial and sporadic ALS. Putative mechanisms of toxicity targeting motor neurons include oxidative damage, accumulation of intracellular aggregates, mitochondrial dysfunction, defects in axonal transport, growth factor deficiency, aberrant RNA metabolism, glial cell pathology, and glutamate excitotoxicity. Convergence of these pathways is likely to mediate disease onset and progression. Ann Neurol 2009;65 (suppl):S3,S9 [source]


Managing amyotrophic lateral sclerosis: Slowing disease progression and improving patient quality of life,

ANNALS OF NEUROLOGY, Issue S1 2009
Benjamin Rix Brooks MD
It is now possible to slow the disease progression of amyotrophic lateral sclerosis (ALS), but documented improvement in the quality of life of ALS patients has been difficult to quantitate. Putative mechanisms involved in motor neuron degeneration in ALS include oxidative damage, mitochondrial dysfunction, neuroinflammation, growth factor deficiency, and glutamate excitotoxicity. Several pharmacological agents that target these potential targets have demonstrated therapeutic potential in animal models with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Many treatments that have been moderately effective in this animal model have not been successfully translated into effective treatments for humans with ALS. Only the glutamate modulator riluzole has demonstrated efficacy in clinical trials and is approved for treating ALS. Combination treatments may represent a potential therapeutic strategy to more robustly prolong life and preserve function, but only vitamin E with riluzole has been formally studied in clinical trials, and to date, no combination treatments have been found to be more effective than currently available single agents. Ann Neurol 2009;65 (suppl):S17,S23 [source]