Home About us Contact | |||
Motor Nerve Terminals (motor + nerve_terminal)
Selected AbstractsModulation by adenosine of both muscarinic M1 -facilitation and M2 -inhibition of [3H]-acetylcholine release from the rat motor nerve terminalsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2002Laura Oliveira Abstract The crosstalk between adenosine and muscarinic autoreceptors regulating evoked [3H]-acetylcholine ([3H]-ACh) release was investigated on rat phrenic nerve-hemidiaphragm preparations. Motor nerve terminals possess facilitatory M1 and inhibitory M2 autoreceptors that can be activated by McN-A-343 (1,30 µm) and oxotremorine (0.3,100 µm), respectively. The muscarinic receptor antagonist, dicyclomine (3 nm,10 µm), caused a biphasic (inhibitory/facilitatory) effect, indicating that M1 -facilitation prevails during 5 Hz stimulation trains. Concomitant activation of AF,DX 116-sensitive M2 receptors was partially attenuated, as pretreatment with M1 antagonists, muscarinic toxin 7 (MT-7, 0.1 nm) and pirenzepine (1 nm), significantly enhanced inhibition by oxotremorine. Activation of A2A -adenosine receptors with CGS 21680C (2 nm) (i) potentiated oxotremorine inhibition, and (ii) shifted McN-A-343-induced facilitation into a small inhibitory effect. Conversely, the A1 -receptor agonist, R- N6 -phenylisopropyl adenosine (R-PIA, 100 nm), attenuated the inhibitory effect of oxotremorine, without changing facilitation by McN-A-343. Synergism between A2A and M2 receptors is regulated by a reciprocal interaction with facilitatory M1 receptors, which may be prevented by pirenzepine (1 nm). During 50 Hz-bursts, facilitation (M1) of [3H]-ACh release by McN-A-343 disappeared, while the inhibitory (M2) effect of oxotremorine became predominant. This muscarinic shift results from the interplay with A2A receptors, as it was precluded by the selective A2A receptor antagonist, ZM 241385 (10 nm). In conclusion, when the muscarinic M1 positive feedback loop is fully operative, negative regulation of ACh release is mediated by adenosine A1 receptors. During high frequency bursts, tonic activation of A2A receptors promotes M2 autoinhibition by braking the M1 receptor operated counteraction. [source] Rapid loss of motor nerve terminals following hypoxia,reperfusion injury occurs via mechanisms distinct from classic Wallerian degenerationJOURNAL OF ANATOMY, Issue 6 2008Becki Baxter Abstract Motor nerve terminals are known to be vulnerable to a wide range of pathological stimuli. To further characterize this vulnerability, we have developed a novel model system to examine the response of mouse motor nerve terminals in ex vivo nerve/muscle preparations to 2 h hypoxia followed by 2 h reperfusion. This insult induced a rapid loss of neurofilament and synaptic vesicle protein immunoreactivity at pre-synaptic motor nerve terminals but did not appear to affect post-synaptic endplates or muscle fibres. The severity of nerve terminal loss was dependent on the age of the mouse and muscle type: in 8,12-week-old mice the predominantly fast-twitch lumbrical muscles showed an 82.5% loss, whereas the predominantly slow-twitch muscles transversus abdominis and triangularis sterni showed a 57.8% and 27.2% loss, respectively. This was contrasted with a > 97% loss in the predominantly slow-twitch muscles from 5,6-week-old mice. We have also demonstrated that nerve terminal loss occurs by a mechanism distinct from Wallerian degeneration, as the slow Wallerian degeneration (Wlds) gene did not modify the extent of nerve terminal pathology. Together, these data show that our new model of hypoxia,reperfusion injury is robust and repeatable, that it induces rapid, quantitative changes in motor nerve terminals and that it can be used to further examine the mechanisms regulating nerve terminal vulnerability in response to hypoxia,reperfusion injury. [source] Maturation of postsynaptic nicotinic structures on autonomic neurons requires innervation but not cholinergic transmissionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2002Sergio Kaiser Abstract Postsynaptic development at the neuromuscular junction depends on nicotinic transmission and secreted components from the presynaptic motor nerve terminal. Similarly, secreted components and synaptic activity are both thought to guide development of glutamatergic synapses in the CNS. Nicotinic synapses on chick ciliary neurons are structurally complex: a large presynaptic calyx engulfs the postsynaptic neuron and overlays a series of discrete mats of receptor-rich somatic spines tightly interwoven and folded against the soma. We used fluorescence imaging of ,7-containing nicotinic receptors and the spine constituent drebrin to monitor postsynaptic development. The results show that surgical disruption of the preganglionic input or removal of the ganglionic synaptic target tissue after synapses form in the ganglion does not disrupt the receptor-rich spine mats. Similarly, removal of the target tissue even prior to synapse formation in the ganglion does not prevent subsequent formation of the receptor clusters and associated spine constituents. Postsynaptic development is arrested, however, if normal innervation is prevented by ablating the preganglionic neurons prior to synapse formation. In this case the neurons express reduced levels of nicotinic receptors and cytoskeletal components and organize them only into early-stage clusters. Even low levels of residual innervation, however, can restore much of the normal postsynaptic receptor patterns. Chronic pharmacological blockade of cholinergic synaptic activity fails to replicate the effects of ablating the preganglionic nucleus. The results indicate that ciliary neurons are programmed to express postsynaptic components and can initiate clustering of ,7-containing receptors but need presynaptic guidance for maturation of the postsynaptic structure. [source] Effect of nitric oxide and NO synthase inhibition on nonquantal acetylcholine release in the rat diaphragmEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2000M. R. Mukhtarov Abstract After anticholinesterase treatment, the postsynaptic muscle membrane is depolarized by about 5 mV due to nonquantal release of acetylcholine (ACh) from the motor nerve terminal. This can be demonstrated by the hyperpolarization produced by the addition of curare (H-effect). The magnitude of the H-effect was decreased significantly to 3 mV when the nitric oxide (NO) donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) were applied to the muscle, or when NO production was elevated by adding l -arginine, but not d -arginine, as a substrate. The H-effect was increased to 8,9 mV by inhibition of NO synthase by l -nitroarginine methylester ( l -NAME), or by guanylyl cyclase inhibition by methylene blue and 1H-[1,2,4]oxidiazolo[4,3-a]quinoxalin-1-one (ODQ). ODQ increased the H-effect to 7.3 ± 0.2 mV and diminished the SNP-induced decrease of the H-effect when applied together with SNP. The effects of NO donors and l -arginine were eliminated by adding reduced haemoglobin, an extracellular NO scavenger. The present results, together with earlier evidence for the presence of NO synthase in muscle fibres, indicate that nonquantal release of ACh is modulated by NO production in the postsynaptic cell. [source] Role of botulinum toxin in migraine therapyDRUG DEVELOPMENT RESEARCH, Issue 7 2007Wilhelm J. Schulte-Mattler Abstract Botulinum toxin effectively blocks the release of acetylcholine from motor nerve terminals. Thus, botulinum toxin injections are well established in the treatment of disorders in which patients are impaired by involuntary muscle contractions. A remarkable pain reduction was frequently observed in these patients, and in vitro studies showed that botulinum toxin reduces not only the release of acetylcholine, but also the release of neuropeptides involved in pain perception. It was therefore hypothesized that botulinum toxin may help patients with pain not caused by muscular contractions, such as migraine or chronic daily headache, which includes chronic migraine. So far, the results of randomized, double-blind, placebo controlled trials on botulinum toxin in a total of 2,612 patients with migraine or with chronic daily headache were published. A superiority of botulinum toxin compared with placebo injections could not clearly be confirmed in any of the studies. One hypothesis derived from these results was that subgroups of patients with migraine can be defined in whom botulinum toxin may be efficacious. This hypothesis awaits confirmation. Interestingly, the efficacy of both botulinum toxin and placebo injections was found to be significant and similar to the efficacy of established oral migraine treatment. This finding may help explain the enthusiasm that followed the first open-label use of botulinum in patients with migraine. Drug Dev Res 68:397,402, 2007. © 2008 Wiley-Liss, Inc. [source] Mechanisms of ATP action on motor nerve terminals at the frog neuromuscular junctionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2005S. Grishin Abstract We have shown previously that ATP inhibits transmitter release at the neuromuscular junction through the action on metabotropic P2Y receptors coupled to specific second messenger cascades. In the present study we recorded K+ or Ca2+ currents in motor nerve endings or blocked K+ or Ca2+ channels in order to explore the nature of downstream presynaptic effectors. Endplate currents were presynaptically depressed by ATP. Blockers of Ca2+ -activated K+ -channels, such as iberiotoxin, apamin or tetraethylammonium, did not change the depressant action of ATP. By contrast, K+ channel blocker 4-aminopyridine (4-AP) and raised extracellular Ca2+ attenuated the effect of ATP. However, these effects of 4-AP and high Ca2+ were reversed by Mg2+, suggesting Ca2+ -dependence of the ATP action. Ba2+ promoted the depressant action of ATP as did glibenclamide, a blocker of ATP-sensitive K+ channels, or mild depolarization produced by 7.5 mm K+. None of the K+ channel blockers affected the depressant action of adenosine. Focal recording revealed that neither ATP nor adenosine affected the fast K+ currents of the motor nerve endings. However, unlike adenosine, ATP or UTP, an agonist of P2Y receptors, reversibly reduced the presynaptic Ca2+ -current. This effect was abolished by suramin, an antagonist of P2 receptors. Depressant effect of ATP on the endplate and Ca2+ -currents was mimicked by arachidonate, which precluded the action of ATP. ATP reduced acetylcholine release triggered by ionomycin or sucrose, suggesting inhibition of release machinery. Thus, the presynaptic depressant action of ATP is mediated by inhibition of Ca2+ channels and by mechanism acting downstream of Ca2+ entry. [source] Kv3 voltage-gated potassium channels regulate neurotransmitter release from mouse motor nerve terminalsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2004Ruth E. Brooke Abstract Voltage-gated potassium (Kv) channels are critical to regulation of neurotransmitter release throughout the nervous system but the roles and identity of the subtypes involved remain unclear. Here we show that Kv3 channels regulate transmitter release at the mouse neuromuscular junction (NMJ). Light- and electron-microscopic immunohistochemistry revealed Kv3.3 and Kv3.4 subunits within all motor nerve terminals of muscles examined [transversus abdominus, lumbrical and flexor digitorum brevis (FDB)]. To determine the roles of these Kv3 subunits, intracellular recordings were made of end-plate potentials (EPPs) in FDB muscle fibres evoked by electrical stimulation of tibial nerve. Tetraethylammonium (TEA) applied at low concentrations (0.05,0.5 mm), which blocks only a few known potassium channels including Kv3 channels, did not affect muscle fibre resting potential but significantly increased the amplitude of all EPPs tested. Significantly, this effect of TEA was still observed in the presence of the large-conductance calcium-activated potassium channel blockers iberiotoxin (25,150 nm) and Penitrem A (100 nm), suggesting a selective action on Kv3 subunits. Consistent with this, 15-µm 4-aminopyridine, which blocks Kv3 but not large-conductance calcium-activated potassium channels, enhanced evoked EPP amplitude. Unexpectedly, blood-depressing substance-I, a toxin selective for Kv3.4 subunits, had no effect at 0.05,1 µm. The combined presynaptic localization of Kv3 subunits and pharmacological enhancement of EPP amplitude indicate that Kv3 channels regulate neurotransmitter release from presynaptic terminals at the NMJ. [source] Modulation by adenosine of both muscarinic M1 -facilitation and M2 -inhibition of [3H]-acetylcholine release from the rat motor nerve terminalsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2002Laura Oliveira Abstract The crosstalk between adenosine and muscarinic autoreceptors regulating evoked [3H]-acetylcholine ([3H]-ACh) release was investigated on rat phrenic nerve-hemidiaphragm preparations. Motor nerve terminals possess facilitatory M1 and inhibitory M2 autoreceptors that can be activated by McN-A-343 (1,30 µm) and oxotremorine (0.3,100 µm), respectively. The muscarinic receptor antagonist, dicyclomine (3 nm,10 µm), caused a biphasic (inhibitory/facilitatory) effect, indicating that M1 -facilitation prevails during 5 Hz stimulation trains. Concomitant activation of AF,DX 116-sensitive M2 receptors was partially attenuated, as pretreatment with M1 antagonists, muscarinic toxin 7 (MT-7, 0.1 nm) and pirenzepine (1 nm), significantly enhanced inhibition by oxotremorine. Activation of A2A -adenosine receptors with CGS 21680C (2 nm) (i) potentiated oxotremorine inhibition, and (ii) shifted McN-A-343-induced facilitation into a small inhibitory effect. Conversely, the A1 -receptor agonist, R- N6 -phenylisopropyl adenosine (R-PIA, 100 nm), attenuated the inhibitory effect of oxotremorine, without changing facilitation by McN-A-343. Synergism between A2A and M2 receptors is regulated by a reciprocal interaction with facilitatory M1 receptors, which may be prevented by pirenzepine (1 nm). During 50 Hz-bursts, facilitation (M1) of [3H]-ACh release by McN-A-343 disappeared, while the inhibitory (M2) effect of oxotremorine became predominant. This muscarinic shift results from the interplay with A2A receptors, as it was precluded by the selective A2A receptor antagonist, ZM 241385 (10 nm). In conclusion, when the muscarinic M1 positive feedback loop is fully operative, negative regulation of ACh release is mediated by adenosine A1 receptors. During high frequency bursts, tonic activation of A2A receptors promotes M2 autoinhibition by braking the M1 receptor operated counteraction. [source] Ovalbumin-induced sensitization affects non-quantal acetylcholine release from motor nerve terminals and alters contractility of skeletal muscles in miceEXPERIMENTAL PHYSIOLOGY, Issue 2 2009Alexander Y. Teplov Skeletal muscles play key roles in the development of various pathologies, including bronchial asthma and several types of auto-immune disorders, e.g. polymyositis. Since most of these maladies have an immunological/allergic element, this paper is devoted to assessing the impact of immunobiological reorganization on the functional properties of isolated skeletal muscles in mice. A combination of two methods (myography and electrophysiology) was used to evaluate extensor digitorum longus (EDL) and diaphragmatic muscle (DM) in this regard. Conventional myographic technique showed that ovalbumin-induced sensitization (OS) produced different changes in the contractile properties of EDL and DM. The amplitudes of carbachol (CCh)-induced contractions increased in DM but decreased in EDL. Those changes were inversely related to OS-mediated changes of non-quantal acetylcholine (ACh) release intensity within the muscle endplate, as shown by the electrophysiologically measured H-effect. These results clearly show that OS-mediated changes of non-quantal ACh release alter the functional properties of postjunctional ACh receptors and therefore contribute to the disturbance of CCh-induced contractility of skeletal muscles. Other mechanisms of OS-mediated changes of skeletal muscle contractility are also proposed and discussed. [source] Loss of translation elongation factor (eEF1A2) expression in vivo differentiates between Wallerian degeneration and dying-back neuronal pathologyJOURNAL OF ANATOMY, Issue 6 2008Lyndsay M. Murray Abstract Wallerian degeneration and dying-back pathology are two well-known cellular pathways capable of regulating the breakdown and loss of axonal and synaptic compartments of neurons in vivo. However, the underlying mechanisms and molecular triggers of these pathways remain elusive. Here, we show that loss of translation elongation factor eEF1A2 expression in lower motor neurons and skeletal muscle fibres in homozygous Wasted mice triggered a dying-back neuropathy. Synaptic loss at the neuromuscular junction occurred in advance of axonal pathology and by a mechanism morphologically distinct from Wallerian degeneration. Dying-back pathology in Wasted mice was accompanied by reduced expression levels of the zinc finger protein ZPR1, as found in other dying-back neuropathies such as spinal muscular atrophy. Surprisingly, experimental nerve lesion revealed that Wallerian degeneration was significantly delayed in homozygous Wasted mice; morphological assessment revealed that ~80% of neuromuscular junctions in deep lumbrical muscles at 24 h and ~50% at 48 h had retained motor nerve terminals following tibial nerve lesion. This was in contrast to wild-type and heterozygous Wasted mice where < 5% of neuromuscular junctions had retained motor nerve terminals at 24 h post-lesion. These data show that eEF1A2 expression is required to prevent the initiation of dying-back pathology at the neuromuscular junction in vivo. In contrast, loss of eEF1A2 expression significantly inhibited the initiation and progression of Wallerian degeneration in vivo. We conclude that loss of eEF1A2 expression distinguishes mechanisms underlying dying-back pathology from those responsible for Wallerian degeneration in vivo and suggest that eEF1A2 -dependent cascades may provide novel molecular targets to manipulate neurodegenerative pathways in lower motor neurons. [source] Rapid loss of motor nerve terminals following hypoxia,reperfusion injury occurs via mechanisms distinct from classic Wallerian degenerationJOURNAL OF ANATOMY, Issue 6 2008Becki Baxter Abstract Motor nerve terminals are known to be vulnerable to a wide range of pathological stimuli. To further characterize this vulnerability, we have developed a novel model system to examine the response of mouse motor nerve terminals in ex vivo nerve/muscle preparations to 2 h hypoxia followed by 2 h reperfusion. This insult induced a rapid loss of neurofilament and synaptic vesicle protein immunoreactivity at pre-synaptic motor nerve terminals but did not appear to affect post-synaptic endplates or muscle fibres. The severity of nerve terminal loss was dependent on the age of the mouse and muscle type: in 8,12-week-old mice the predominantly fast-twitch lumbrical muscles showed an 82.5% loss, whereas the predominantly slow-twitch muscles transversus abdominis and triangularis sterni showed a 57.8% and 27.2% loss, respectively. This was contrasted with a > 97% loss in the predominantly slow-twitch muscles from 5,6-week-old mice. We have also demonstrated that nerve terminal loss occurs by a mechanism distinct from Wallerian degeneration, as the slow Wallerian degeneration (Wlds) gene did not modify the extent of nerve terminal pathology. Together, these data show that our new model of hypoxia,reperfusion injury is robust and repeatable, that it induces rapid, quantitative changes in motor nerve terminals and that it can be used to further examine the mechanisms regulating nerve terminal vulnerability in response to hypoxia,reperfusion injury. [source] Time course of axonal regeneration in acute motor axonal neuropathyMUSCLE AND NERVE, Issue 6 2007Noriko Tamura MD Abstract Patients with acute motor axonal neuropathy (AMAN) generally recover well. We reviewed clinical and electrophysiologic recovery in 13 patients for up to 5 years. Twelve patients showed rapid recovery over 12 months, whereas in the remaining one the recovery was slow and incomplete at 5 years. In AMAN, axonal degeneration appears to develop predominantly in the motor nerve terminals, and only occasionally more proximally in the nerve roots. Nerve terminal degeneration,regeneration presumably provides a mechanism for good recovery. Muscle Nerve, 2007 [source] Capsaicin delays regeneration of the neuromuscular junction of rat extensor digitorum longus muscle after ischemiaMUSCLE AND NERVE, Issue 4 2006Béla Turchányi MD Abstract Trauma or the tourniquet used in orthopedic surgery is often associated with ischemia,reperfusion (I/R) injury with a consequent decrease of muscle power. To explore whether components of the neuromuscular junction (NMJ) are involved in this muscle dysfunction, NMJs were ultrastructurally characterized in the extensor digitorum longus muscle of rats at reperfusion times of 1, 24, 72, and 168 h after a 120-min arterial occlusion. Disorganization of the presynaptic membrane and mitochondrial injury was noted at 1 h, followed by fragmentation and partial engulfment of nerve terminals by Schwann cells at 24 and 72 h. The magnitude of degenerative changes declined at 168 h, suggesting the commencement of regeneration. The postsynaptic membrane remained intact throughout the whole period. In our previous study, deafferentation with pretreatment of the sciatic nerve with capsaicin, which reduces neurogenic inflammation and has a selective effect on nociceptive fibers, improved functional recovery of the muscle after I/R. The present results document a significantly delayed structural regeneration of the motor nerve terminals after combined capsaicin and I/R treatment. Since capsaicin treatment alone had no discernible effect on the structure of NMJs, the findings point to a possibly indirect effect of capsaicin on the motor nerves, which may predispose them to increased susceptibility unmasked only by a subsequent injury. The mismatch between the enhanced functional improvement of the muscle and delayed regeneration of the nerve after capsaicin pretreatment questions the efficient use of such deafferentation to protect the integrity of neuromuscular junctions in I/R injury. Muscle Nerve, 2006 [source] Effects of wortmannin and latrunculin A on slow endocytosis at the frog neuromuscular junctionTHE JOURNAL OF PHYSIOLOGY, Issue 1 2004D. A. Richards Phosphoinositides are key regulators of synaptic vesicle cycling and endocytic traffic; the actin cytoskeleton also seems to be involved in modulating these processes. We investigated the effects of perturbing phosphoinositide signalling and actin dynamics on vesicle cycling in frog motor nerve terminals, using fluorescence and electron microscopy, and electrophysiology. Antibody staining for ,-actin revealed that actin surrounds but does not overlap with synaptic vesicle clusters. Latrunculin A, which disrupts actin filaments by binding actin monomers, and wortmannin, an inhibitor of phosphatidyl inositol-3-kinase (PI3-kinase), each disrupted the pattern of presynaptic actin staining, but not vesicle clusters in resting terminals. Latrunculin A, but not wortmannin, also reduced vesicle mobilization and exocytosis. Both drugs inhibited the stimulation-induced uptake of the styryl dye FM1-43 and blocked vesicle reformation from internalized membrane objects after tetanic stimulation. These results are consistent with a role of PI3-kinase and the actin cytoskeleton in the slow pathway of vesicle endocytosis, used primarily by reserve pool vesicles. [source] Electrophysiological properties of BK channels in Xenopus motor nerve terminalsTHE JOURNAL OF PHYSIOLOGY, Issue 1 2004Xiao-Ping Sun Single channel properties of Ca2+ -activated K+ (BK or Maxi-K) channels have been investigated in presynaptic membranes in Xenopus motoneurone,muscle cell cultures. The occurrence and density of BK channels increased with maturation/synaptogenesis and was not uniform: highest at the release face of bouton-like synaptic varicosities in contact with muscle cells, and lowest in varicosities that did not contact muscle cells. The Ca2+ affinity of the channel (Kd= 7.7 ,m at a membrane potential of +20 mV) was lower than those of BK channels that have been characterized in other terminals. Hill coefficients varied between 1.5 and 2.8 at different potentials and open probability increased e-fold per 16 mV change in membrane potential over a range of [Ca2+]i from 1 ,m to 1 mm. The maximal activation rate of ensembled single BK channel currents was in the submillisecond range at ,+20 mV. The activation rate increased ,10-fold in response to a [Ca2+]i increase from 1 to 100 ,m, but increased only ,2-fold with a voltage change from +20 to +130 mV. The fastest activation kinetics of BK channels in cell-attached patches resembled that in inside-out patches with [Ca2+]i of 100 ,m or more, suggesting that many BK channels are located very close to calcium channels. Given the low Ca2+ affinity and rapid Ca2+ binding/unbinding properties, we conclude that BK channels in this preparation are adapted to play an important role in regulation of neurotransmitter release, and they are ideal reporters of local [Ca2+] at the inner membrane surface. [source] |