Motor Cortex Area (motor + cortex_area)

Distribution by Scientific Domains


Selected Abstracts


Facial nerve injury-induced disinhibition in the primary motor cortices of both hemispheres

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2000
Tamás Farkas
Abstract Unilateral facial nerve transection induces plastic reorganization of the somatotopic order in the primary motor cortex area (MI). This process is biphasic and starts with a transient disinhibition of connections between cortical areas in both hemispheres. Little is known about the underlying mechanisms. Here, cortical excitability has been studied by paired pulse electrical stimulation, applied either within the MI or peripherally to the trigeminal nerve, while the responses were recorded bilaterally in the MI. The ratios between the amplitudes of the second and first evoked potentials (EPs or fEPSPs) were taken as measures of the inhibitory capacity in the MI ipsilateral or contralateral to the nerve injury. A skin wound or unilateral facial nerve exposure immediately caused a transient facilitation, which was followed by a reset to some level of inhibition in the MI on both sides. After facial nerve transection, the first relatively mild reduction of inhibition started shortly (within 10 min) after denervation. This was followed by a second step, involving a stronger decrease in inhibition, 40,45 min later. Previous publications have proved that sensory nerve injury (deafferentation) induces disinhibition in corresponding areas of the sensory cortex. It is now demonstrated that sham operation and, to an even greater extent, unilateral transection of the purely motoric facial nerve (deefferentation), each induce extended disinhibition in the MIs on both sides. [source]


Improved target volume characterization in stereotactic treatment planning of brain lesions by using high-resolution BOLD MR-venography

NMR IN BIOMEDICINE, Issue 7-8 2001
Lothar R. Schad
Abstract In this methodological paper I report the stereotactic correlation of different magnetic resonance imaging (MRI) techniques [MR angiography (MRA), MRI, blood bolus tagging (STAR), functional MRI, and high-resolution BOLD venography (HRBV)] in patients with cerebral arterio-venous malformations (AVM) and brain tumors. The patient's head was fixed in a stereotactic localization system which is usable in both MR-systems and linear accelerator installations. Using phantom measurements global geometric MR image distortions can be ,corrected' (reducing displacements to the size of a pixel) by calculations based on modeling the distortion as a fourth-order two-dimensional polynomial. Further object-induced local distortions can be corrected by additionally measured field maps. Using this method multimodality matching could be performed automatically as long as all images are acquired in the same examination and the patient is sufficiently immobilized to allow precise definition of the target volume. Information about the hemodynamics of the AVM was provided by a dynamic MRA with the STAR technique, leading to an improved definition of the size of the nidus, the origin of the feeding arteries, whereas HRBV imaging yielded detailed and improved information about the venous pattern and drainage. In addition, functional MRI was performed in patients with lesions close to the primary motor cortex area, leading to an improved definition of structures at risk for the high-dose application in radiosurgery. In patients with brain tumors the potential of HRBV to probe tumor angiogenesis and its use in intensity-modulated treatment planning is still hampered by the open question of how to translate a BOLD signal pattern measured in the tumor to a dose distribution, which should be addressed in future studies. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Current density threshold for the stimulation of neurons in the motor cortex area

BIOELECTROMAGNETICS, Issue 6 2002
T. Kowalski
Abstract The aim of this study was to determine a current density threshold for exciting the motor cortex area of the brain. The current density threshold for excitation of nerve fibres (20 ,m in diameter) found in the literature is approximately 1 A/m2 at frequencies lower than 1 kHz. In consideration of a safety factor of 100, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommends to restrict the exposure to 0.01 A/m2. The electromagnetic stimulation of neurons in the motor cortex is used in the clinical diagnosis of nerve lesions and neuropathy by means of magnetic or electrical transcranial stimulation. Combining medical data from clinical studies and technical specifications of the Magstim® Model 200 stimulator, we were able to compute the current density threshold for the excitation of the human motor cortex by means of the finite element method (FEM). A 3D-CAD head model was built on the basis of magnetic resonance imaging (MRI) slices and segmented into four anatomical structures (scalp, skull, brain, and ventricular system) with different conductivities. A current density threshold for the stimulation of the motor cortex area of the upper limbs of 6 and 2.5 A/m2 at 2.44 kHz and 50 Hz, respectively, was calculated. As these values lie above the recommended ICNIRP values by two orders of magnitude there is no need for lower safety standards with regard to stimulation of the brain. Bioelectromagnetics 23:421,428, 2002. © 2002 Wiley-Liss, Inc. [source]


Bayesian Nonparametric Modeling for Comparison of Single-Neuron Firing Intensities

BIOMETRICS, Issue 1 2010
Athanasios Kottas
Summary We propose a fully inferential model-based approach to the problem of comparing the firing patterns of a neuron recorded under two distinct experimental conditions. The methodology is based on nonhomogeneous Poisson process models for the firing times of each condition with flexible nonparametric mixture prior models for the corresponding intensity functions. We demonstrate posterior inferences from a global analysis, which may be used to compare the two conditions over the entire experimental time window, as well as from a pointwise analysis at selected time points to detect local deviations of firing patterns from one condition to another. We apply our method on two neurons recorded from the primary motor cortex area of a monkey's brain while performing a sequence of reaching tasks. [source]