Home About us Contact | |||
Motoneuron Pool (motoneuron + pool)
Selected AbstractsDevelopmental characteristics of AMPA receptors in chick lumbar motoneuronsDEVELOPMENTAL NEUROBIOLOGY, Issue 11 2007Xianglian Ni Abstract Ca2+ fluxes through ionotropic glutamate receptors regulate a variety of developmental processes, including neurite outgrowth and naturally occurring cell death. In the CNS, NMDA receptors were originally thought to be the sole source of Ca2+ influx through glutamate receptors; however, AMPA receptors also allow a significant influx of Ca2+ ions. The Ca2+ permeability of AMPA receptors is regulated by the insertion of one or more edited GluR2 subunits. In this study, we tested the possibility that changes in GluR2 expression regulate the Ca2+ permeability of AMPA receptors during a critical period of neuronal development in chick lumbar motoneurons. GluR2 expression is absent between embryonic day (E) 5 and E7, but increases significantly by E8 in the chick ventral spinal cord. Increased GluR2 protein expression is correlated with parallel changes in GluR2 mRNA in the motoneuron pool. Electrophysiological recordings of kainate-evoked currents indicate a significant reduction in the Ca2+ -permeability of AMPA receptors between E6 and E11. Kainate-evoked currents were sensitive to the AMPA receptor blocker GYKI 52466. Application of AMPA or kainate generates a significant increase in the intracellular Ca2+ concentration in E6 spinal motoneurons, but generates a small response in older neurons. Changes in the Ca2+ -permeability of AMPA receptors are not mediated by age-dependent changes in the editing pattern of GluR2 subunits. These findings raise the possibility that Ca2+ influx through Ca2+ -permeable AMPA receptors plays an important role during early embryonic development in chick spinal motoneurons. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source] Coherent corticomuscular oscillations originate from primary motor cortex: Evidence from patients with early brain lesionsHUMAN BRAIN MAPPING, Issue 10 2006Christian Gerloff Abstract Coherent oscillations of neurons in the primary motor cortex (M1) have been shown to be involved in the corticospinal control of muscle activity. This interaction between M1 and muscle can be measured by the analysis of corticomuscular coherence in the ,-frequency range (,-CMCoh; 14,30 Hz). Largely based on magnetoencephalographic (MEG) source-modeling data, it is widely assumed that ,-CMCoh reflects direct coupling between M1 and muscle. Deafferentation is capable of modulating ,-CMCoh, however, and therefore the influence of reafferent somatosensory signaling and corresponding neuronal activity in the somatosensory cortex (S1) has been unclear. We present transcranial magnetic stimulation (TMS) and MEG data from three adult patients suffering from congenital hemiparesis due to pre- and perinatally acquired lesions of the pyramidal tract. In these patients, interhemispheric reorganization had resulted in relocation of M1 to the contralesional hemisphere, ipsilateral to the paretic hand, whereas S1 had remained in the lesioned hemisphere. This topographic dichotomy allowed for an unequivocal topographic differentiation of M1 and S1 with MEG (which is not possible if M1 and S1 are directly adjacent within one hemisphere). In all patients, ,-CMCoh originated from the contralesional M1, in accordance with the TMS-evoked motor responses, and in contrast to the somatosensory evoked fields (SEFs) for which the sources (N20m) were localized in S1 of the lesioned hemisphere. These data provide direct evidence for the concept that ,-CMCoh reflects the motorcortical efferent drive from M1 to the spinal motoneuron pool and muscle. No evidence was found for a relevant contribution of neuronal activity in S1 to ,-CMCoh. Hum Brain Mapp, 2006. © 2006 Wiley-Liss, Inc. [source] Modulation of the soleus H-reflex following galvanic vestibular stimulation and cutaneous stimulation in prone human subjectsMUSCLE AND NERVE, Issue 2 2009Catherine R. Lowrey MSc Abstract There is evidence to suggest that vestibular and somatosensory inputs may interact when they are processed by the central nervous system, although the nature of the individual sensory contributions to this interaction is unknown. We examined the effects of a combined vestibular and cutaneous conditioning stimulus on the motoneuron pool that supplies the soleus muscle via the Hoffman reflex (H-reflex). We applied galvanic vestibular stimulation (GVS; bipolar, binaural, 500 ms, 2.5-mA square-wave pulse) and cutaneous stimulation (medial plantar nerve; 11 ms, three-pulse train, 200 HZ) to prone human subjects and examined changes in the amplitude of the H-reflex. GVS alone caused facilitation (approximately 20%) of the H-reflex, whereas ipsilateral cutaneous stimulation alone caused a 26% inhibition. Paired GVS and cutaneous stimulation resulted in a linear summation of the individual conditioning effects. H-reflex amplitudes observed after paired conditioning with GVS and cutaneous stimulation could be predicted from the amplitudes observed with individual conditioning. These results suggest that in the prone position, when the muscles are not posturally engaged, vestibular and somatosensory information appear to sum in a linear fashion to influence the reflex response of lower limb motoneurons. Muscle Nerve 40: 213,220, 2009 [source] Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking systemDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2003Ulrich Bässler Abstract The influence of vibratory signals from the femoral chordotonal organ fCO on the activities of muscles and motoneurons in the three main leg joints of the stick insect leg, i.e., the thoraco,coxal (TC) joint, the coxa,trochanteral (CT) joint, and the femur,tibia (FT) joint, was investigated when the animal was in the active behavioral state. Vibration stimuli induced a switch in motor activity (phase transition), for example, in the FT joint motor activity switched from flexor tibiae to extensor tibiae or vice versa. Similarly, fCO vibration induced phase transitions in both directions between the motoneuron pools of the TC joint and the CT joint. There was no correlation between the directions of phase transition in different joints. Vibration stimuli presented during simultaneous fCO elongation terminated the reflex reversal motor pattern in the FT joint prematurely by activating extensor and inactivating flexor tibiae motoneurons. In legs with freely moving tibia, fCO vibration promoted phase transitions in tibial movement. Furthermore, ground vibration promoted stance,swing transitions as long as the leg was not close to its anterior extreme position during stepping. Our results provide evidence that, in the active behavioral state of the stick insect, vibration signals can access the rhythm generating or bistable networks of the three main leg joints and can promote phase transitions in motor activity in both directions. The results substantiate earlier findings on the modular structure of the single-leg walking pattern generator and indicate a new mechanism of how sensory influence can contribute to the synchronization of phase transitions in adjacent leg joints independent of the walking direction. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 125,138, 2003 [source] |