Home About us Contact | |||
Mosquito Hosts (mosquito + hosts)
Selected AbstractsRole of dopachrome conversion enzyme in the melanization of filarial worms in mosquitoesINSECT MOLECULAR BIOLOGY, Issue 6 2005C.-Y. Huang Abstract Melanization is an effective defence reaction of mosquito hosts against invading parasites. In mosquitoes, the biosynthesis of melanin is initiated by the hydroxylation of tyrosine to DOPA by phenoloxidase (PO). DOPA is a branch point of the melanization reaction; it may be oxidized to dopaquinone by PO or be decarboxylated to dopamine by dopa decarboxylase. Further oxidation of dopaquinone by PO produces dopachrome. Dopachrome is then converted to 5, 6-dihydroxyindole by dopachrome conversion enzyme (DCE) to produce melanin. The conversion of dopachrome is a rate-limiting step of the melanization reaction, and the presence of PO and DCE significantly accelerates melanization reactions. In this study, a cDNA encoding DCE was cloned from the mosquito Armigeres subalbatus. Real-time PCR analysis revealed increased transcripts from haemocytes in microfilariae (mf)-inoculated mosquitoes. Gene silencing using double-stranded RNA was used to elucidate the role of DCE in the melanization reaction of parasites in Ar. subalbatus. The levels of both DCE transcripts and protein in gene knockdown mosquitoes were dramatically reduced. Compared with controls, the degree of melanization of mf in DCE-knockdown mosquitoes was significantly decreased. These results suggest that DCE is a critical enzyme that is required for effective melanization immune responses. [source] Effect of prophenoloxidase expression knockout on the melanization of microfilariae in the mosquito Armigeres subalbatusINSECT MOLECULAR BIOLOGY, Issue 4 2001S. H. Shiao Abstract Melanization is an effective defence reaction used by mosquito hosts to kill malarial and filarial worm parasites. Although phenoloxidase (PO) has long been considered to be the key enzyme in the biosynthesis of melanotic material in insects, there is no direct evidence verifying its role in parasite melanization. To elucidate the role of PO in the melanization of microfilariae (mf) by mosquitoes, a double subgenomic Sindbis (dsSIN) recombinant virus was used to transduce Armigeres subalbatus mosquitoes with a 600 base antisense RNA targeted to the highly conserved copper-binding region of an Ar. subalbatus PO gene. Compared with controls, haemolymph PO activity in mosquitoes transduced with antisense RNA was significantly reduced. When these mosquitoes were challenged with Dirofilaria immitis mf, the melanization of mf was almost completely inhibited. These data verify that PO is an essential component of the biochemical pathway required for the melanization of parasites, and that the dsSIN expression system represents a useful tool in the functional analysis of endogenous gene expression in mosquitoes. [source] West Nile virus: lessons from the 21st centuryJOURNAL OF VETERINARY EMERGENCY AND CRITICAL CARE, Issue 1 2004DACVECC, DACVIM, Pamela A. Wilkins DVM Abstract Introduction: West Nile virus (WNV) first appeared in the United States in 1999, causing illness and death in birds, horses, and humans. While the initial outbreak of this sometimes deadly viral disease was limited to the northeastern United States, the virus had an inexorable migration across the continental United States over the next 3 years, causing huge losses among the affected species. The purpose of this review is to present currently available information regarding the epi-demiology, diagnosis, treatment, and prevention of WNV infection. Veterinarians, particularly those in an emergency practice, serve as an important source of reliable information regarding this disease for animal owners and the public in general. Data sources: Data sources used for the preparation of this review include computer-based searches of PubMed and Commonwealth Agricultural Bureaux (CAB) abstracts. A search in PubMed using ,West Nile' retrieved 1468 ,hits' or references, while a similar search in CAB abstracts produced 815 references. Additional information was obtained from various meeting proceedings, particularly data presented in abstract form, and from the Centers for Disease Control (CDC) website dedicated to WNV. Human data synthesis: Prior to the mid-1990s, reported large-scale epidemics of WNV infection in humans predominantly presented as acute, mild, febrile disease, sometimes associated with lymphadenopathy and skin rash. The recent large epidemic in the United States, in contrast, has prominently featured encephalitis, particularly among the elderly. Additionally, polio-encephalomyelitis-like complications resulting in long-term neurologic sequelae have been reported. There are many WNV-permissive native avian and mosquito hosts in the Unites States and there appear to be few limitations to the spread of the disease in the United States. It is expected that the virus will be identified in all 48 continental states, Mexico, and Canada by the end of 2003. Veterinary data synthesis: The horse is the animal species most affected by the recent WNV epidemic in the United States, and losses to the equine industry have been large and unprecedented. A United States Department of Agriculture (USDA)-approved vaccine against WNV has been in use in horses since 2001 and appears to be effective in limiting the incidence of disease in well-vaccinated populations. WNV infection has been documented in other species of mammals, including camelids (alpaca/llamas) and dogs, and veterinarians should include WNV as a differential diagnosis for animals presenting with clinical signs consistent with central nervous system infection. A large concern exists for endangered bird populations, particularly birds of prey, whether in zoos or in the wild. [source] Bacteriophage WO-B and Wolbachia in natural mosquito hosts: infection incidence, transmission mode and relative densityMOLECULAR ECOLOGY, Issue 9 2006N. CHAUVATCHARIN Abstract Bacteriophages of Wolbachia bacteria have been proposed as a potential transformation tool for genetically modifying mosquito vectors. In this study, we report the presence of the WO-B class of Wolbachia -associated phages among natural populations of several mosquito hosts. Eighty-eight percent (22/25) of Wolbachia -infected mosquito species surveyed were found to contain WO-B phages. WO-B phage orf7 sequence analysis suggested that a single strain of WO-B phage was found in most singly (23/24) or doubly (1/1) Wolbachia -infected mosquitoes. However, the single Wolbachia strain infecting Aedes perplexus was found to harbour at least two different WO-B phages. Phylogenetic analysis suggested that horizontal transmission of WO-B phages has occurred on an evolutionary scale between the Wolbachia residing in mosquitoes. On an ecological scale, a low trend of co-transmission occurred among specific WO-B phages within Wolbachia of each mosquito species. Assessment of the density of WO-B phage by real-time quantitative polymerase chain reaction (RTQ-PCR) revealed an average relative density of 7.76 × 105± 1.61 × 105 orf7 copies per individual mosquito for a single Wolbachia strain infecting mosquitoes, but a threefold higher density in the doubly Wolbachia-infected Aedes albopictus. However, the average combined density of WO-B phage(s) did not correlate with that of their Wolbachia hosts, which varied in different mosquito species. We also confirmed the presence of WO-B-like virus particles in the laboratory colony of Ae. albopictus (KLPP) morphologically, by transmission electron microscopy (TEM). The viral-like particles were detected after purification and filtration of Ae. albopictus ovary extract, suggesting that at least one WO-B-like phage is active (temperate) within the Wolbachia of this mosquito vector. Nevertheless, the idea of utilizing these bacteriophages as transformation vectors still needs more investigation and is likely to be unfeasible. [source] |