Mosquito Anopheles Gambiae (mosquito + anopheles_gambiae)

Distribution by Scientific Domains


Selected Abstracts


Characterization of the Hox cluster from the mosquito Anopheles gambiae (Diptera: culicidae)

EVOLUTION AND DEVELOPMENT, Issue 6 2000
Thomas P. Powers
SUMMARY The Hox genes have been found to encode transcription factors, which specify the morphological identity of structures along the anteroposterior axis of animals ranging from worms to mice. The canonical set of nine genes is organized in a cluster in the genome of several protostomes and deuterostomes. However, within insects, whereas the Hox genes are organized in a single cluster in the beetle Tribolium castaneum, they are split into two separate groups in the flies Drosophila melanogaster and Drosophila virilis. The significance of a split Hox cluster is unknown and has been observed in only one organism outside the Drosophila lineage: the nematode Caenorhabditis elegans. We have cloned a majority of the Hox genes from the mosquito Anopheles gambiae (Diptera: Culicidae) and compared their genomic organization with that of Tribolium and Drosophila to determine if a split Hox cluster is found in dipterans aside from the Drosophilidae. We find that the Hox genes in Anopheles, as in Tribolium, are organized in a single cluster that spans a genomic region of at least 700 kb. This finding suggests that, within the insect genome, the partition of the Hox cluster may have evolved exclusively within the Drosophila lineage. The genomic structures of the resident genes, however, appear to be largely conserved between A. gambiae and D. melanogaster. [source]


Cloning and molecular characterization of two invertebrate-type lysozymes from Anopheles gambiae

INSECT MOLECULAR BIOLOGY, Issue 3 2008
S. M. Paskewitz
Abstract We sequenced and characterized two novel invertebrate-type lysozymes from the mosquito Anopheles gambiae. Alignment and phylogenetic analysis of these and a number of related insect proteins identified through bioinformatics strategies showed a high degree of conservation of this protein family throughout the Class Insecta. Expression profiles were examined for the two mosquito genes through semiquantitative and real-time PCR analysis. Lys i-1 transcripts were found in adult females in the fat body and Malpighian tubules, whereas Lys i-2 was detected only in fat bodies. Blood-feeding resulted in significantly increased transcript abundance for both genes in the midguts. Neither gene was upregulated following bacterial challenge. [source]


Microarray-based survey of a subset of putative olfactory genes in the mosquito Anopheles gambiae

INSECT MOLECULAR BIOLOGY, Issue 6 2005
H. Biessmann
Abstract Female Anopheles gambiae mosquitoes respond to odours emitted from humans in order to find a blood meal, while males are nectar feeders. This complex behaviour is controlled at several levels, but is probably initiated by the interaction of various molecules in the antennal sensilla. Important molecules in the early odour recognition events include odourant binding proteins (OBPs), which may be involved in odour molecule transport, odourant receptors (ORs) that are expressed in the chemosensory neurones and odour degrading enzymes (ODEs). To obtain a better understanding of the expression patterns of genes that may be involved in host odour reception in females, we generated a custom microarray to study their steady state mRNA levels in chemosensory tissues, antennae and palps. These results were supported by quantitative RT PCR. Our study detected several OBPs that are expressed at significantly higher levels in antennae and palps of females vs. males, while others showed the opposite expression pattern. Most OBPs are slightly down-regulated 24 h after blood feeding, but some, especially those with higher expression levels in males, are up-regulated in blood-fed females, suggesting a shift in blood-fed females from human host seeking to nectar feeding. [source]


Storage and secretion of the peritrophic matrix protein Ag-Aper1 and trypsin in the midgut of Anopheles gambiae

INSECT MOLECULAR BIOLOGY, Issue 4 2004
M. Devenport
Abstract The gene Ag-Aper1 encodes a peritrophic matrix (PM) protein from the mosquito Anopheles gambiae. Ag-Aper1 gene expression and protein localization in the mosquito midgut were studied during the course of a blood meal. Ag-Aper1 mRNA abundance does not change appreciably during the course of blood ingestion and digestion. Prior to a blood meal, the protein is stored in secretory vesicles of midgut epithelial cells. Moreover, Ag-Aper1 colocalizes to the same secretory vesicles as trypsin, indicating that these proteins use a common secretory pathway. Blood feeding triggers the secretion of vesicle contents into the midgut lumen, after which Ag-Aper1 is incorporated into the PM. Newly synthesized Ag-Aper1 protein was again detected within the midgut epithelial cells at 60 h after blood ingestion. [source]


Isolation of cDNA clones encoding putative odourant binding proteins from the antennae of the malaria-transmitting mosquito, Anopheles gambiae

INSECT MOLECULAR BIOLOGY, Issue 2 2002
Harald Biessmann
Abstract One way of controlling disease transmission by blood-feeding mosquitoes is to reduce the frequency of insect,host interaction, thus reducing the probability of parasite transmission and re-infection. A better understanding of the olfactory processes responsible for allowing mosquitoes to identify human hosts is required in order to develop methods that will interfere with host seeking. We have therefore initiated a molecular approach to isolate and characterize the genes and their products that are involved in the olfactory recognition pathway of the mosquito Anopheles gambiae, which is the main malaria vector in sub-Saharan Africa. We report here the isolation and preliminary characterization of several cDNAs from male and female A. gambiae antennal libraries that encode putative odourant binding proteins. Their conceptual translation products show extensive sequence similarity to known insect odourant binding proteins (OBPs)/pheromone binding proteins (PBPs), especially to those of D. melanogaster. The A. gambiae OBPs described here are expressed in the antennae of both genders, and some of the A. gambiae OBP genes are well conserved in other disease-transmitting mosquito species, such as Aedes aegypti and Culex quinquefasciatus. [source]


Developmental variation in epidermal growth factor receptor size and localization in the malaria mosquito, Anopheles gambiae

INSECT MOLECULAR BIOLOGY, Issue 6 2001
G. Lycett
Abstract The AGER gene encoding the epidermal growth factor receptor (EGFR) of the malaria mosquito Anopheles gambiae was cloned and sequenced. It represents a canonical member of this family of tyrosine kinase proteins exhibiting many similarities to orthologues from other species, both on the level of genomic organization and protein structure. The mRNA can be detected throughout development. Western analysis with an antibody raised against the extracellular domain of the mosquito protein suggests developmental variation in protein size and location that may be involved in the function of EGFR in the mosquito. [source]


The rate of terminal nucleotide loss from a telomere of the mosquito Anopheles gambiae

INSECT MOLECULAR BIOLOGY, Issue 1 2001
M. F. Walter
Abstract Using a single copy pUChsneo transgene insertion at the Anopheles gambiae 2L telomere, this chromosome end was monitored by genomic Southern blots for forty-four mosquito generations. During this time, the chromosome end lost terminal nucleotides at an apparently constant rate of 55 bp/generation, which can be accounted for by incomplete DNA replication and does not imply exonuclease activity. No telomere elongation events were detected, suggesting that a previously described gene conversion event at this transgene does not occur very frequently. Moreover, no evidence for elongation by transposable elements was found, as described in Drosophila melanogaster. These results are consistent with the proposal that gene conversion between complex terminal satellite repeats that are present at natural telomeres, represents the major telomere elongation mechanism in A. gambiae. Such recombination events between repetitive sequences would occur more frequently than between the single copy pUChsneo transgene on the 2L homologues. [source]


Biological cost of tolerance to heavy metals in the mosquito Anopheles gambiae

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 2 2010
P. O. MIREJI
The global rate of heavy metal pollution is rapidly increasing in various habitats. Anopheles malaria vector species (Diptera: Culicidae) appear to tolerate many aquatic habitats with metal pollutants, despite their normal proclivity for ,clean' water (i.e. low levels of organic matter). Investigations were conducted to establish whether there are biological costs for tolerance to heavy metals in Anopheles gambiae Giles sensu stricto and to assess the potential impact of heavy metal pollution on mosquito ecology. Anopheles gambiae s.s. were selected for cadmium, copper or lead tolerance through chronic exposure of immature stages to solutions of the metals for three successive generations. Biological costs were assessed in the fourth generation by horizontal life table analysis. Tolerance in larvae to cadmium (as cadmium chloride, CdCl2), copper [as copper II nitrate hydrate, Cu(NO3)2 2.5 H2O] and lead [as lead II nitrate, Pb(NO3)2], monitored by changes in LC50 concentrations of the metals, changed from 6.07 µg/L, 12.42 µg/L and 493.32 µg/L to 4.45 µg/L, 25.02 µg/L and 516.69 µg/L, respectively, after three generations of exposure. The metal-selected strains had a significantly lower magnitude of egg viability, larval and pupal survivorship, adult emergence, fecundity and net reproductive rate than the control strain. The population doubling times were significantly longer and the instantaneous birth rates lower in most metal-selected strains relative to the control strain. Our results suggest that although An. gambiae s.s. displays the potential to develop tolerance to heavy metals, particularly copper, this may occur at a significant biological cost, which can adversely affect its ecological fitness. [source]


Temperature-related duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the laboratory

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 2 2004
M. N. Bayoh
Abstract., Vector abundance is an important factor governing disease risk and is often employed when modelling disease transmission. The longevity of the aquatic stages of mosquitoes (Diptera: Culicidae) dictates the rate of production of adults and hence the intensity of disease transmission. We examined how temperature influences the survival of larval stages (larvae and pupae) of Anopheles gambiae Giles sensu stricto and subsequent adult production of this most efficient malaria vector. Groups of 30 mosquitoes were reared at constant temperatures (from 10 to 40 °C) from the first instar and observed until death or metamorphosis of the last individual. Larvae developed into adults at temperatures ranging from 16 to 34 °C. Larval survival was shortest (< 7 days) at 10,12 °C and 38,40 °C, and longest (> 30 days) at 14,20 °C. Within the temperature range at which adults were produced, larval mortality was highest at the upper range 30,32 °C, with death (rather than adult emergence) representing over 70% of the terminal events. The optimal survival temperatures were lower than the temperatures at which development was quickest, suggesting a critical relationship between temperature and the life cycle of the insect. These data provide fundamental information about An. gambiae s.s. adult productivity at different temperatures, which may facilitate the construction of process-based models of malaria risk in Africa and the development of early warning systems for epidemics. [source]


G, encoding gene family of the malaria vector mosquito Anopheles gambiae: Expression analysis and immunolocalization of AG,q and AG,o in female antennae

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2007
Article first published online: 10 NOV 200
No abstract is available for this article. [source]


G, encoding gene family of the malaria vector mosquito Anopheles gambiae: Expression analysis and immunolocalization of AG,q and AG,o in female antennae

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2006
Michael Rützler
Abstract To initiate a comprehensive investigation of chemosensory signal transduction downstream of odorant receptors, we identified and characterized the complete set of genes that encode G-protein , subunits in the genome of the malaria vector mosquito An. gambiae. Data are provided on the tissue-specific expression patterns of 10 corresponding aga -transcripts in adult mosquitoes and pre-imago developmental stages. Specific immunoreactivity in chemosensory hairs of female antennae provides evidence in support of the participation of a subset of AG,q isoforms in olfactory signal transduction in this mosquito. In contrast, AG,o is localized along the flagellar axon bundle but is absent from chemosensory sensilla, which suggests that this G-protein , subunit does not participate in olfactory signal transduction. J. Comp. Neurol. 499:533,545, 2006. © 2006 Wiley-Liss, Inc. [source]


Identification and expression of odorant-binding proteins of the malaria-carrying mosquitoes Anopheles gambiae and Anopheles arabiensis

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2005
Zheng-Xi Li
Abstract Host preference and blood feeding are restricted to female mosquitoes. Olfaction plays a major role in host-seeking behaviour, which is likely to be associated with a subset of mosquito olfactory genes. Proteins involved in olfaction include the odorant receptors (ORs) and the odorant-binding proteins (OBPs). OBPs are thought to function as a carrier within insect antennae for transporting odours to the olfactory receptors. Here we report the annotation of 32 genes encoding putative OBPs in the malaria mosquito Anopheles gambiae and their tissue-specific expression in two mosquito species of the Anopheles complex; a highly anthropophilic species An. gambiae sensu stricto and an opportunistic, but more zoophilic species, An. arabiensis. RT-PCR shows that some of the genes are expressed mainly in head tissue and a subset of these show highest expression in female heads. One of the genes (agCP1588) which has not been identified as an OBP, has a high similarity (40%) to the Drosophila pheromone-binding protein 4 (PBPRP4) and is only expressed in heads of both An. gambiae and An. arabiensis, and at higher levels in female heads. Two genes (agCP3071 and agCP15554) are expressed only in female heads and agC15554 also shows higher expression levels in An. gambiae. The expression profiles of the genes in the two members of the Anopheles complex provides the first step towards further molecular analysis of the mosquito olfactory apparatus. Arch. Insect Biochem. Physiol. 58:175,189, 2005. © 2005 Wiley-Liss, Inc. [source]