Morphometric Variables (morphometric + variable)

Distribution by Scientific Domains


Selected Abstracts


Morphometric controls and geomorphic responses on fans in the Southern Alps, New Zealand

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2004
Fes A. de Scally
Abstract Morphometric variables associated with 41 debris-,ow and 18 ,uvial fans and their basins in the Southern Alps of New Zealand are examined. The results show statistically signi,cant differences in the area, maximum elevation, relief and ruggedness (Melton's R) of the basin and the area, gradient, and apex and toe elevations of the fan between debris-,ow and ,uvial sites. Concavity of the fan longitudinal pro,le also differs between the two fan types, although this could not be tested statistically. Most of these morphometric differences re,ect differences in processes and environmental controls on them. Discriminant analysis indicates that basin area and fan gradient best differentiate the two fan types by process. Moderately strong correlations exist, on both debris-,ow and ,uvial fans, between basin area or Melton's R and fan area. Correlations between basin area or Melton's R and fan gradient are generally weaker. The results of this study also indicate that on debris-,ow-prone fans the fan gradient and basin Melton's R have lower thresholds which overlap little with upper thresholds associated with basins where only stream,ow reaches the fan. These thresholds may therefore have value in preliminary morphometric assessments of debris-,ow hazard on fans in the Southern Alps. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Morphometric Controls and Basin Response in The Cascade Mountains

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3 2001
Fes De Scally
Morphometric variables associated with 36 debris torrent, 78 snow avalanche, 45 composite debris torrent and snow avalanche and 14 streamflow basins in the Cascade Mountains of southwestern British Columbia, Canada are examined. The results show significant statistical differences in top and bottom elevations, relief, channel length and gradient, basin area, fan gradient and area, and basin ruggedness between snow avalanche basins and the two basin types affected by debris torrents, reflecting the very different nature of these processes. Only top and bottom elevations and fan area differ significantly between debris torrent and debris torrent-snow avalanche basins, implying that the latter are probably debris torrent basins in origin. As many as six morphometric variables are significantly different between streamflow basins and the other basin types, allowing the former to be differentiated despite their small, steep character. Discriminant analysis indicates that bottom elevation and channel or path gradient are the best variables for classifying the four basin types by process. Generally strong correlations exist between basin area on the one hand and relief, channel length and channel gradient on the other in debris torrent, debris torrent-snow avalanche, and streamflow basins. Fan gradient and area are, however, weakly or modestly correlated with basin area or ruggedness. No such morphometric relations are present in snow avalanche basins. The results of this study also indicate that in debris torrent-prone basins the fan gradient and Melton's R have identifiable lower thresholds while basin area has an upper threshold, but use of these thresholds for identification of debris torrent hazard is complicated by overlapping thresholds for streamflow basins. [source]


Morphological variation of the five vole species of the genus Microtus (Mammalia, Rodentia, Arvicolinae) occurring in Greece

ACTA ZOOLOGICA, Issue 3 2009
Stella E. Fraguedakis-Tsolis
Abstract Morphometric data for the five vole species of the genus Microtus living in Greece are old, sparse, poor and insufficiently analysed. This work aims to give the first comprehensive morphometric analysis of body and skull inter- and intraspecific variation for M. (M.) guentheri, M. (M.) rossiaemeridionalis, M. (Terricola) subterraneus, M. (T.) felteni and M. (T.) thomasi, applying multivariate statistics to 28 linear morphometric variables. It was based on ample material (202 adult individuals) using samples from localities that adequately cover the entire distributional range of each species in Greece. The five species and the two subgenera (Microtus and Terricola) were morphometrically clearly distinguished and discriminating variables were revealed. However, morphometrics did not provide robust criteria to infer phylogenetic relations among species. Furthermore, three species, M. (M.) guentheri, M. (M.) rossiaemeridionalis and M. (T.) thomasi, exhibited considerable intraspecific size or shape variation, which was mostly random and not associated with geographical proximity. Comparisons with data in the literature, mainly concerning populations of these species from adjacent areas, indicate that the Greek M. (M.) guentheri, M. (M.) rossiaemeridionalis and M. (T.) thomasi tend to be smaller than their conspecifics, while M. (T.) subterraneus and M. (T.) felteni are about equal in size to their Balkan relatives. [source]


Effects of land use on aquatic macrophyte diversity and water quality of ponds

FRESHWATER BIOLOGY, Issue 4 2010
MUNEMITSU AKASAKA
Summary 1. Aquatic macrophyte diversity and water quality of 55 ponds in western Japan were related to land use and morphometric variables to identify the environmental factors that sustain biodiversity and the spatial extent at which these factors operate. 2. The relevant spatial extent for floating-leaved macrophyte richness (500 m from pond edge) was larger than that for submerged macrophyte occurrence (10, 75 and 100 m), whereas emergent macrophyte richness was best explained at much larger extents (1000 m). Total macrophyte richness was explained at the extent of 500, 750 and 1000 m. The extents relevant for explaining the physicochemical condition of pond water (100 and 250 m) were similar to those for submerged and floating-leaved macrophytes, suggesting that these two growth forms are more sensitive to water quality compared to emergent macrophytes. 3. Diversity of all three growth forms and that of total macrophytes collectively were inversely related to turbidity and nutrient concentration; among the three growth forms, submerged macrophytes were most affected by water quality. 4. Negative relationships were found between the proportion of urban area and the diversity of the three growth forms and that of total macrophytes and water quality. Species richness of emergent, floating-leaved and total macrophytes decreased with depth and increased with surface area up to about 5000 m2, above which it declined. 5. Urbanisation and enlargement of ponds were the two main factors that decreased aquatic macrophyte diversity in irrigation ponds. To alleviate the adverse effects of urban areas on aquatic macrophyte diversity, our results suggest that management efforts should focus on the creation of buffer zones within the relevant spatial extent from the pond edge. [source]


Morphometric Controls and Basin Response in The Cascade Mountains

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3 2001
Fes De Scally
Morphometric variables associated with 36 debris torrent, 78 snow avalanche, 45 composite debris torrent and snow avalanche and 14 streamflow basins in the Cascade Mountains of southwestern British Columbia, Canada are examined. The results show significant statistical differences in top and bottom elevations, relief, channel length and gradient, basin area, fan gradient and area, and basin ruggedness between snow avalanche basins and the two basin types affected by debris torrents, reflecting the very different nature of these processes. Only top and bottom elevations and fan area differ significantly between debris torrent and debris torrent-snow avalanche basins, implying that the latter are probably debris torrent basins in origin. As many as six morphometric variables are significantly different between streamflow basins and the other basin types, allowing the former to be differentiated despite their small, steep character. Discriminant analysis indicates that bottom elevation and channel or path gradient are the best variables for classifying the four basin types by process. Generally strong correlations exist between basin area on the one hand and relief, channel length and channel gradient on the other in debris torrent, debris torrent-snow avalanche, and streamflow basins. Fan gradient and area are, however, weakly or modestly correlated with basin area or ruggedness. No such morphometric relations are present in snow avalanche basins. The results of this study also indicate that in debris torrent-prone basins the fan gradient and Melton's R have identifiable lower thresholds while basin area has an upper threshold, but use of these thresholds for identification of debris torrent hazard is complicated by overlapping thresholds for streamflow basins. [source]


Morphometric convergence and molecular divergence: the taxonomic status and evolutionary history of Gymnura crebripunctata and Gymnura marmorata in the eastern Pacific Ocean

JOURNAL OF FISH BIOLOGY, Issue 4 2009
W.D. Smith
To clarify the taxonomic status of Gymnura crebripunctata and Gymnura marmorata, the extent of morphological and nucleotide variation between these nominal species was examined using multivariate morphological and mitochondrial DNA comparisons of the same characters with congeneric species. Discriminant analysis of 21 morphometric variables from four species (G. crebripunctata, G. marmorata, Gymnura micrura and Gymnura poecilura) successfully distinguished species groupings. Classification success of eastern Pacific species improved further when specimens were grouped by species and sex. Discriminant analysis of size-corrected data generated species assignments that were consistently accurate in separating the two species (100% jackknifed assignment success). Nasal curtain length was identified as the character which contributed the most to discrimination of the two species. Sexual dimorphism was evident in several characters that have previously been relied upon to distinguish G. crebripunctata from G. marmorata. A previously unreported feature, the absence of a tail spine in G. crebripunctata, provides an improved method of field identification between these species. Phylogenetic and genetic distance analyses based on 698 base pairs of the mitochondrial cytochrome b gene indicate that G. crebripunctata and G. marmorata form highly divergent lineages, supporting their validity as distinct species. The closely related batoid Aetoplatea zonura clustered within the Gymnura clade, indicating that it may not represent a valid genus. Strong population structuring (overall ,ST = 0·81,P < 0·01) was evident between G. marmorata from the Pacific coast of the Baja California peninsula and the Gulf of California, supporting the designation of distinct management units in these regions. [source]


Morphological variation among populations of Aphanius fasciatus Nardo, 1827 (Teleostei, Cyprinodontidae) from the Mediterranean

JOURNAL OF FISH BIOLOGY, Issue 1 2007
V. Ferrito
The amount of osteological variation among 11 Italian killifish Aphanius fasciatus populations was examined by the univariate and multivariate analysis of 40 morphometric and meristic variables of the skull and vertebral column. Populations were sampled in three geographically distinct areas (the Adriatic, Sardinia and Sicily). The statistical analysis confirmed that several populations were well differentiated. In particular, discriminant analysis revealed a strong discriminating power of the morphometric variables. Morphometrics of the vertebrae, bony elements of the pharyngeal jaws, supraoccipital and parasphenoid were the most important in discriminating populations. The dendrogram obtained by UPGMA cluster analysis shows the separation of the south-eastern Sicilian populations, that of the Sardinian populations and that of the central-northern Sicilian plus Adriatic populations, as well as the isolation of the Sicilian population from Pantano Viruca and of the Sardinian populations from Pauli Figu from all the others. The significance of the observed differentiation pattern is discussed. [source]


Distinction between Mulloidichthys flavolineatus juveniles from Reunion Island and Mauritius Island (south-west Indian Ocean) based on otolith morphometrics

JOURNAL OF FISH BIOLOGY, Issue 1 2006
K. Pothin
Sagittal otoliths of the yellowstripe goatfish Mulloidichthys flavolineatus were analysed in order to compare Reunion Island fish stocks with those of Mauritius (south-west Indian Ocean). Conventional otolith morphometric variables (area, perimeter, length and width), shape indices (form factor, roundness, circularity, rectangularity, ellipticity and eccentricity) and Fourier shape analysis were compared between three sites; two in Reunion Island and one in Mauritius. Regional and site-specific differences were found for all the conventional otolith morphometric features. Regarding the shape indices, the differences between sites were best described by form factor, roundness, circularity and rectangularity. A classification by canonical discriminant analysis indicated significant differences between the three sampling sites. The combined use of morphometric variables (size and shape) and external outlines (shape analysis through Fourier series) showed the importance of otolith shape for intraspecific discrimination. [source]


Morphometry and abnormalities of the feet of Kaimanawa feral horses in New Zealand

AUSTRALIAN VETERINARY JOURNAL, Issue 4 2010
BA Hampson
Objective The present study investigated the foot health of the Kaimanawa feral horse population and tested the hypotheses that horses would have a large range of foot morphology and that the incidence of foot abnormality would be significantly high. Procedures Abnormality was defined as a variation from what the two veterinarian assessors considered as optimal morphology and which was considered to impact negatively on the structure and/or function of the foot. Fifteen morphometric variables were measured on four calibrated photographic views of all four feet of 20 adult Kaimanawa feral horses. Four morphometric variables were measured from the lateromedial radiographs of the left forefoot of each horse. In addition, the study identified the incidence of gross abnormality observed on the photographs and radiographs of all 80 feet. Results There was a large variation between horses in the morphometric dimensions, indicating an inconsistent foot type. Mean hoof variables were outside the normal range recommended by veterinarians and hoof care providers; 35% of all feet had a long toe conformation and 15% had a mediolateral imbalance. Abnormalities included lateral (85% of horses) and dorsal (90% of horses) wall flares, presence of laminar rings (80% of horses) and bull-nose tip of the distal phalanx (75% of horses). Both hypotheses were therefore accepted. Conclusions The Kaimanawa feral horse population demonstrated a broad range of foot abnormalities and we propose that one reason for the questionable foot health and conformation is lack of abrasive wearing by the environment. In comparison with other feral horse populations in Australia and America there may be less pressure on the natural selection of the foot of the Kaimanawa horses by the forgiving environment of the Kaimanawa Ranges. Contrary to popular belief, the feral horse foot type should not be used as an ideal model for the domestic horse foot. [source]