Morphology

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Morphology

  • QR morphology
  • abnormal morphology
  • adult morphology
  • aggregate morphology
  • altered morphology
  • apoptotic morphology
  • bill morphology
  • blend morphology
  • body morphology
  • bone morphology
  • brain morphology
  • branch morphology
  • canal morphology
  • capillary morphology
  • cardiac morphology
  • cartilage morphology
  • cell morphology
  • cellular morphology
  • channel morphology
  • characteristic morphology
  • chromosome morphology
  • colony morphology
  • column morphology
  • comparative morphology
  • complex morphology
  • cone morphology
  • controlled morphology
  • core-shell morphology
  • corneal morphology
  • cranial morphology
  • craniodental morphology
  • craniofacial morphology
  • crystal morphology
  • crystalline morphology
  • cuboidal morphology
  • cylindrical morphology
  • cyst morphology
  • dendrite morphology
  • dendritic morphology
  • dental morphology
  • developmental morphology
  • different morphology
  • disc morphology
  • distinct morphology
  • distinctive morphology
  • egg morphology
  • elongated morphology
  • endothelial morphology
  • epithelial morphology
  • external morphology
  • eye morphology
  • facial morphology
  • female morphology
  • fiber morphology
  • fibrous morphology
  • film morphology
  • final morphology
  • flight morphology
  • floral morphology
  • flower morphology
  • foam morphology
  • fracture morphology
  • fruit morphology
  • functional morphology
  • general morphology
  • gland morphology
  • golgi morphology
  • grain morphology
  • gross morphology
  • growth cone morphology
  • growth morphology
  • head morphology
  • hyphal morphology
  • interfacial morphology
  • intermediate morphology
  • internal morphology
  • intestinal morphology
  • jaw morphology
  • joint morphology
  • larval morphology
  • leaf morphology
  • limb morphology
  • liver morphology
  • mandibular morphology
  • membrane morphology
  • microscopic morphology
  • mitochondrial morphology
  • mucosal morphology
  • muscle morphology
  • mycelial morphology
  • nail morphology
  • nanoscale morphology
  • nerve morphology
  • neuronal morphology
  • normal morphology
  • normal sperm morphology
  • novel morphology
  • nuclear morphology
  • ovarian morphology
  • p-wave morphology
  • particle morphology
  • phase morphology
  • plant morphology
  • plaque morphology
  • pollen morphology
  • polymer morphology
  • pore morphology
  • porous morphology
  • reproductive morphology
  • retinal morphology
  • river morphology
  • rod-like morphology
  • root canal morphology
  • root morphology
  • same morphology
  • sample morphology
  • scale morphology
  • seed morphology
  • shell morphology
  • similar morphology
  • skeletal morphology
  • skull morphology
  • smooth morphology
  • specific morphology
  • sperm morphology
  • spherical morphology
  • spherulite morphology
  • spherulitic morphology
  • spindle morphology
  • spine morphology
  • stem morphology
  • structural morphology
  • surface morphology
  • testis morphology
  • three-dimensional morphology
  • tissue morphology
  • tooth morphology
  • trophic morphology
  • tunable morphology
  • two-phase morphology
  • ultrastructural morphology
  • unique morphology
  • unusual morphology
  • valve morphology
  • varied morphology
  • various morphology
  • vertebral morphology
  • very different morphology
  • vessel morphology
  • wall morphology
  • wave morphology
  • wing morphology

  • Terms modified by Morphology

  • morphology alone
  • morphology analysis
  • morphology change
  • morphology characteristic
  • morphology control
  • morphology development
  • morphology evolution
  • morphology formation
  • morphology similar
  • morphology studies
  • morphology transformation
  • morphology transition

  • Selected Abstracts


    SPERM MORPHOLOGY AND VELOCITY ARE GENETICALLY CODETERMINED IN THE ZEBRA FINCH

    EVOLUTION, Issue 10 2009
    Jim Mossman
    Sperm morphology (size and shape) and sperm velocity are both positively associated with fertilization success, and are expected to be under strong selection. Until recently, evidence for a link between sperm morphology and velocity was lacking, but recent comparative studies have shown that species with high levels of sperm competition have evolved long and fast sperm. It is therefore surprising that evidence for a phenotypic or genetic relationship between length and velocity within species is equivocal, even though sperm competition is played out in the intraspecific arena. Here, we first show that sperm velocity is positively phenotypically correlated with measures of sperm length in the zebra finch Taeniopygia guttata. Second, by using the quantitative genetic "animal model" on a dataset from a multigenerational-pedigreed population, we show that sperm velocity is heritable, and positively genetically correlated to a number of heritable components of sperm length. Therefore, selection for faster sperm will simultaneously lead to the evolution of longer sperm (and vice versa). Our results provide, for the first time, a clear phenotypic and genetic link between sperm length and velocity, which has broad implications for understanding how recently described macroevolutionary patterns in sperm traits have evolved. [source]


    POSTMATING SEXUAL SELECTION: ALLOPATRIC EVOLUTION OF SPERM COMPETITION MECHANISMS AND GENITAL MORPHOLOGY IN CALOPTERYGID DAMSELFLIES (INSECTA: ODONATA)

    EVOLUTION, Issue 2 2004
    A. Cordero Rivera
    Abstract Postmating sexual selection theory predicts that in allopatry reproductive traits diverge rapidly and that the resulting differentiation in these traits may lead to restrictions to gene flow between populations and, eventually, reproductive isolation. In this paper we explore the potential for this premise in a group of damselflies of the family Calopterygidae, in which postmating sexual mechanisms are especially well understood. Particularly, we tested if in allopatric populations the sperm competition mechanisms and genitalic traits involved in these mechanisms have indeed diverged as sexual selection theory predicts. We did so in two different steps. First, we compared the sperm competition mechanisms of two allopatric populations of Calopteryx haemorrhoidalis (one Italian population studied here and one Spanish population previously studied). Our results indicate that in both populations males are able to displace spermathecal sperm, but the mechanism used for sperm removal between both populations is strikingly different. In the Spanish population males seem to empty the spermathecae by stimulating females, whereas in the Italian population males physically remove sperm from the spermathecae. Both populations also exhibit differences in genital morphometry that explain the use of different mechanisms: the male lateral processes are narrower than the spermathecal ducts in the Italian population, which is the reverse in the Spanish population. The estimated degree of phenotypic differentiation between these populations based on the genitalic traits involved in sperm removal was much greater than the differentiation based on a set of other seven morphological variables, suggesting that strong directional postmating sexual selection is indeed the main evolutionary force behind the reproductive differentiation between the studied populations. In a second step, we examined if a similar pattern in genital morphometry emerge in allopatric populations of this and other three species of the same family (Calopteryx splendens, C. virgo and Hetaerina cruentata). Our results suggest that there is geographic variation in the sperm competition mechanisms in all four studied species. Furthermore, genitalic morphology was significantly divergent between populations within species even when different populations were using the same copulatory mechanism. These results can be explained by probable local coadaptation processes that have given rise to an ability or inability to reach and displace spermathecal sperm in different populations. This set of results provides the first direct evidence of intraspecific evolution of genitalic traits shaped by postmating sexual selection. [source]


    DEFINITION OF INTERNAL MORPHOLOGY AND STRUCTURAL CHANGES DUE TO DEHYDRATION OF RADISH (RAPHANUS SATIVUS L. CV. SUPRELLA) USING MAGNETIC RESONANCE IMAGING SPECTROSCOPY

    JOURNAL OF FOOD QUALITY, Issue 5-6 2005
    ANNA SALERNO
    ABSTRACT Magnetic resonance imaging (MRI) spectroscopy is a promising nondestructive analytical technique in food science. It offers the unique opportunity of studying vegetables, fruits and other foods in general, in their wholeness without any preparative manipulation of the sample. The aim of this study was to investigate the internal structure of radish and to monitor the variations induced by postharvest storage at low relative humidity. The MRI allowed for a clear definition of the internal structure of radishes with distinct visibility of xylematic and phloematic vessels distributed in a radial way. A decrease in water content, which results in the breakdown of tissues and the formation of large cavities with the detachment of the external cortex, is the main consequence of a few days' storage in low relative humidity. Both of these are factors that drastically decrease the quality of the radish's fleshy root. The MRI images give a novel insight into the internal organization of the hypocotyl, and this offers opportunities for further studies with regard to the structural differences related to the cultivars as well as the cultivation system. [source]


    GEITLERINEMA SPECIES (OSCILLATORIALES, CYANOBACTERIA) REVEALED BY CELLULAR MORPHOLOGY, ULTRASTRUCTURE, AND DNA SEQUENCING,

    JOURNAL OF PHYCOLOGY, Issue 3 2009
    Maria Do Carmo Bittencourt-Oliveira
    Geitlerinema amphibium (C. Agardh ex Gomont) Anagn. and G. unigranulatum (Rama N. Singh) Komárek et M. T. P. Azevedo are morphologically close species with characteristics frequently overlapping. Ten strains of Geitlerinema (six of G. amphibium and four of G. unigranulatum) were analyzed by DNA sequencing and transmission electronic and optical microscopy. Among the investigated strains, the two species were not separated with respect to cellular dimensions, and cellular width was the most varying characteristic. The number and localization of granules, as well as other ultrastructural characteristics, did not provide a means to discriminate between the two species. The two species were not separated either by geography or environment. These results were further corroborated by the analysis of the cpcB- cpcA intergenic spacer (PC-IGS) sequences. Given the fact that morphology is very uniform, plus the coexistence of these populations in the same habitat, it would be nearly impossible to distinguish between them in nature. On the other hand, two of the analyzed strains were distinct from all others based on the PC-IGS sequences, in spite of their morphological similarity. PC-IGS sequences indicate that these two strains could be a different species of Geitlerinema. Using morphology, cell ultrastructure, and PC-IGS sequences, it is not possible to distinguish G. amphibium and G. unigranulatum. Therefore, they should be treated as one species, G. unigranulatum as a synonym of G. amphibium. [source]


    CHANGES IN THE MORPHOLOGY AND POLYSACCHARIDE CONTENT OF MICROCYSTIS AERUGINOSA (CYANOBACTERIA) DURING FLAGELLATE GRAZING,

    JOURNAL OF PHYCOLOGY, Issue 3 2008
    Zhou Yang
    To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies. [source]


    THE SYSTEMATICS OF A SMALL SPINELESS DESMODESMUS SPECIES, D. COSTATO-GRANULATUS (SPHAEROPLEALES, CHLOROPHYCEAE), BASED ON ITS2 rDNA SEQUENCE ANALYSES AND CELL WALL MORPHOLOGY,

    JOURNAL OF PHYCOLOGY, Issue 2 2007
    Pieter Vanormelingen
    Desmodesmus species taxonomy is one of the most long-standing issues in green microalgal systematics due to problems associated with phenotypic plasticity. Whereas more recent species descriptions and identifications are mainly based on cell wall structures and the use of cultures, comparisons with molecular phylogenies are largely lacking. In this study, the phylogenetic relationships between 22 clones identified as Desmodesmus costato-granulatus (Skuja) E. H. Hegew. were assessed using ITS2 rDNA sequence data in combination with cell wall morphology. The unrooted ITS2 phylogeny showed that the clones cluster into five groups, which also differ in their cell wall structures. Therefore, the taxon is split into five species: D. costato-granulatus, D. elegans, D. fennicus, D. regularis, and D. ultrasquamatus. Compared with other Desmodesmus species, intraspecific sequence variation is extensive and may contain additional (pseudo)cryptic diversity. Compensatory base changes were near-absent within the species and varied from one to 11 between species. Relationships among the species were unresolved. Despite this, they clustered together with the two other Desmodesmus species having a combination of small and large warts in a well-supported lineage. Remarkably, ITS2 sequence variation in this lineage is as high as between all other included Desmodesmus species, even though the morphology of its members is rather uniform. [source]


    AN SEM-BASED ANALYSIS OF THE MORPHOLOGY, ANATOMY, AND REPRODUCTION OF LITHOTHAMNION TOPHIFORME (ESPER) UNGER (CORALLINALES, RHODOPHYTA), WITH A COMPARATIVE STUDY OF ASSOCIATED NORTH ATLANTIC ARCTIC/SUBARCTIC MELOBESIOIDEAE,

    JOURNAL OF PHYCOLOGY, Issue 5 2005
    Walter H. Adey
    Lithothamnion tophiforme (Esper) Unger is a dominant, arctic, saxicolous species that extends southward, albeit with reduced cover, into the deeper colder waters of the North Atlantic subarctic, where it also occurs in significant rhodolith deposits with L. glaciale. The external appearance of L. tophiforme is distinctive, but typification, anatomy, reproduction, ecology, and biogeography have not been previously analyzed. These topics are now addressed, with extensive use of SEM, in comparison with other North Atlantic arctic and subarctic melobesioid genera and species. The species considered in this article comprise 95% of the coralline biomass of the colder North Atlantic and adjacent arctic (i.e. less than 12° C summer and less than 0° C winter). In the outer thallus region of coralline algae, crust extension proceeds, calcification develops, surface sloughing and grazing occur, and reproductive structures are initiated. Analysis of the ultrastructure of the outer thallus region (epithallium, meristem, and perithallium) of L. tophiforme shows distinctive generic similarities and specific differences from the other Lithothamnion species discussed here. Considerable generic differences from the Clathromorpum and Leptophytum species also encountered in the region considered are highlighted as well. We discuss the functional and taxonomic implications of these distinguishing features and recommend that they be more widely considered in future research on coralline algae to understand more fully the ecology and evolution of the Corallinales. [source]


    TAXONOMIC REEXAMINATION OF 17 SPECIES OF NITELLA SUBGENUS TIEFFALLENIA (CHARALES, CHAROPHYCEAE) BASED ON INTERNAL MORPHOLOGY OF THE OOSPORE WALL AND MULTIPLE DNA MARKER SEQUENCES,

    JOURNAL OF PHYCOLOGY, Issue 1 2005
    Hidetoshi Sakayama
    In an attempt to reconstruct the natural taxonomic system for Nitella, 17 species of Nitella subgenus Tieffallenia were reexamined using SEM observations of the internal morphology of the oospore wall (IMOW) and phylogenetic analyses of 4553 base pairs from multiple DNA markers (atpB, rbcL, psaB, and ITS-5.8S rRNA genes). Our SEM observations identified three types of IMOW: homogeneous (HG), weakly spongy (W-SG), and strongly spongy (S-SG) types. Based on differences in the IMOW, species with reticulate or tuberculate oospore wall ornamentation in the external morphology of the oospore wall (EMOW) were subdivided into two distinct groups (characterized by the HG or S-SG types of IMOW, respectively), which were robustly separated from each other in our molecular phylogenetic analyses. In our molecular phylogeny, the subgenus Tieffallenia consisted of four robust monophyletic groups,three clades of the HG type and a spongy (S-SG and W-SG) type clade,that were characterized by differences in the IMOW and EMOW. In addition, our SEM observations and sequence data verified the distinct status of five species (N. japonica Allen, N. oligospira A. Braun, N. vieillardii stat. nov., N. imperialis stat. nov., and N. morongii Allen) that R. D. Wood had assigned as infraspecific taxa. Moreover, our SEM observations of the IMOW also suggested that N. megaspora (J. Groves) Sakayama originally identified by LM includes at least two distinct species, characterized by W-SG and S-SG types of IMOW, respectively. [source]


    MORPHOLOGY, LIFE HISTORY, AND MOLECULAR PHYLOGENY OF STSCHAPOVIA FLAGELLARIS (TILOPTERIDALES, PHAEOPHYCEAE) AND THE ERECTION OF THE STSCHAPOVIACEAE FAM.

    JOURNAL OF PHYCOLOGY, Issue 6 2004

    The phenology, life history, ultrastructure of reproductive structures, and molecular phylogeny using rbcL and rDNA (5.8S, internal transcribed spacer 2, and partial 26S) gene sequences of Stschapovia flagellaris, endemic to the northwestern Pacific Ocean, were studied. This species was first classified in the order Delamareales together with Delamarea, Coelocladia, and Cladothele. Those three genera, however, were later transferred to Dictyosiphonales, whereas the systematic position of Stschapovia remained unclear. At Abashiri, Hokkaido, Japan, the species regenerated by forming a new erect thallus from a perennial crustose holdfast or by presumably parthenogenetic development of eggs released from the erect thallus. There was no alternation of generations. In winter, the monoecious erect thallus formed reproductive structures (i.e. plurilocular antheridia and oogonia) in the thickened part of the thallus. Sperm had a chloroplast with an eyespot and a long anterior and short posterior flagellum. Eggs contained numerous disc-shaped chloroplasts, physodes, and vacuoles. Neither sexual attraction of the presumptive sperm by eggs nor their sexual fusion was observed. Molecular phylogenetic analyses revealed the closest phylogenetic relationship between Stschapovia and Halosiphonaceae, and they grouped with Phyllariaceae and Tilopteridaceae (Tilopteridales s. s.). Stschapovia and Tilopteridaceae have several important morphological similarities: chloroplasts lacking pyrenoids, lack of sexual reproduction despite the release of obvious sperm, occurrence of monoecious gametophytes, and similarity in the early developmental pattern of the erect thallus. In conclusion, we propose the establishment of the new family Stschapoviaceae to accommodate Stschapovia and the placement of the family in the order Tilopteridales together with Tilopteridaceae, Halosiphonaceae, and Phyllariaceae. [source]


    PHYLOGENY OF AULACOSEIRA (BACILLARIOPHYTA) BASED ON MOLECULES AND MORPHOLOGY,

    JOURNAL OF PHYCOLOGY, Issue 4 2004
    Stacy M. Edgar
    The phylogeny of 67 populations representing 45 species of Aulacoseira Thwaites was estimated by maximum parsimony methods using a combination of nucleotide sequence data and qualitative and quantitative morphological characteristics of the silica cell wall gathered primarily from original observation by LM and SEM. A new type of character using continuous quantitative variables that describe the ontogenetic-allometric trajectories of cell wall characteristics over the life cycle (size range) of diatoms is introduced. In addition to the 45 Aulacoseira species, the phylogeny also incorporated one Miosira Krammer, Lange-Bertalot, and Schiller species and two outgroup species (Melosira varians Agardh and Stephanopyxis nipponica Gran & Yendo). Fifteen species, represented by 24 populations, also contained molecular data from the nuclear genome (18S rDNA), and 11 of these species (18 populations) contained data from the chloroplast genome (rbcL) as well, which were sequenced or downloaded from GenBank. The phylogeny of Aulacoseira is composed of five major clades: 1) an A. crenulata (Ehrenburg) Thwaites and A. italica (Ehrenburg) Simonsen clade, which is the most basal; 2) an A. granulata (Ehrenburg) Simonsen complex clade; 3) an A. ambigua (Grunow) Simonsen clade; 4) an A. subarctica (O. Müller) Haworth and A. distans (Ehrenburg) Simonsen clade; and 5) an A. islandica (O. Müller) Simonsen clade that also contained endemic species from Lake Baikal, Siberia and many extinct Aulacoseira taxa. Monophyly of Aulacoseira can only be achieved if Miosira is no longer given separate generic status. [source]


    COMPARATIVE MORPHOLOGY AND MOLECULAR PHYLOGENETIC ANALYSIS OF THREE NEW SPECIES OF THE GENUS KARENIA (DINOPHYCEAE) FROM NEW ZEALAND,

    JOURNAL OF PHYCOLOGY, Issue 1 2004
    Allison J. Haywood
    Three new dinoflagellate species, Karenia papilionacea sp. nov., Karenia selliformis sp. nov., and Karenia bidigitata sp. nov., were compared with the toxic species Karenia mikimotoi (Miyake & Kominami ex Oda) G. Hansen & Moestrup, Karenia brevis (Davis) G. Hansen & Moestrup, and Karenia brevisulcata (Chang) G. Hansen & Moestrup using the same fixative. Distinguishing morphological characters for the genus Karenia included a smooth theca and a linear apical groove. The new species can be distinguished on the basis of morphological characters of vegetative cells that include the location and shape of the nucleus; the relative excavation of the hypotheca; the characteristics of apical and sulcal groove extensions on the epitheca; the cellular shape, size, and symmetry; the degree of dorsoventral compression; and the presence of an apical protrusion or carina. Species with pronounced dorsoventral compression swim in a distinctive fluttering motion. An intercingular tubular structure traversing the proximal and distal ends of the cingulum is common to the species of Karenia, Karlodinium micrum (Leadbeater & Dodge) J. Larsen, Gymnodinium pulchellum J. Larsen, and Gyrodinium corsicum Paulmier. Molecular phylogenetic analyses of rDNA sequence alignments show that the new species are phylogenetically distinct but closely related to K. mikimotoi and K. brevis. [source]


    MORPHOLOGY, REPRODUCTION, AND THE 18S rRNA GENE SEQUENCE OF PIHIELLA LIAGORACIPHILA GEN.

    JOURNAL OF PHYCOLOGY, Issue 5 2003
    ET SP.
    Pihiella liagoraciphila gen. et sp. nov. (Rhodophyta) is described for a minute endo/epiphyte that is commonly associated with members of the Liagoraceae ( Nemaliales, Rhodophyta). Algae are discoid or subspherical and grow to a maximum diameter of 400 ,m. Attachment is via isolated elongate rhizoids that penetrate into the loosely filamentous structure of the host or by a pad of several coalesced rhizoids where the host has a more cohesive cortex. Elongate surface hairs are common. Gametophytes are dioecious, the spermatangia arising on surface cells, and carpogonia with elongate trichogynes borne directly on undifferentiated surface supporting cells. Large sporangia form on stalk cells across the upper surface of the plants, these appearing to be either monosporangial or the result of fertilization of the carpogonia and equivalent to undivided zygotosporangia. Carposporophytes and tetrasporangia are unknown. 18S rRNA gene sequence analyses indicate that Pihiella constitutes a clade of long branch length most closely related to the Ahnfeltiales. The unique morphology and reproduction of Pihiella, combined with a substantial genetic divergence from the Ahnfeltiales, suggest that it is sufficiently distinct to warrant placement in a new family and order. We therefore describe the family Pihiellaceae and the order Pihiellales to accommodate the new genus. [source]


    CYST,THECA RELATIONSHIP, LIFE CYCLE, AND EFFECTS OF TEMPERATURE AND SALINITY ON THE CYST MORPHOLOGY OF GONYAULAX BALTICA SP.

    JOURNAL OF PHYCOLOGY, Issue 4 2002
    NOV. (DINOPHYCEAE) FROM THE BALTIC SEA AREA
    A new species of Gonyaulax, here named Gonyaulax baltica sp. nov., has been isolated from sediment samples from the southeastern Baltic. Culture strains were established from individually isolated cysts, and cyst formation was induced in a nitrogen-depleted medium. Although G. baltica cysts are similar to some forms attributed to Spiniferites bulloideus and the motile stage of G. baltica has affinities with G. spinifera, the combination of features of cyst and motile stage of G. baltica is unique. The culture strains were able to grow at salinity levels from 5 to 55 psu and formed cysts from 10 to 50 psu. Cultures at each salinity level were grown at 12, 16, and 20° C. Temperature- and salinity-controlled morphological variability was found in the resting cysts. Central body size varied with temperature and salinity, and process length varied with salinity. Cysts that formed at extreme salinity levels displayed lower average process length than cysts formed at intermediate salinity levels, and central body length and width were lowest at higher temperature and lower salinity. Models for the relationship between central body size and temperature/salinity and process length and salinity have been developed and may be used to determine relative paleosalinity and paleotemperature levels. Our results on salinity-dependent process length confirm earlier reports on short-spined cysts of this species found in low salinity environments, and the model makes it possible to attempt to quantify past salinity levels. [source]


    THE LOWER CAMBRIAN EODISCOID TRILOBITE CALODISCUS LOBATUS FROM SWEDEN: MORPHOLOGY, ONTOGENY AND DISTRIBUTION

    PALAEONTOLOGY, Issue 3 2009
    PETER CEDERSTRÖM
    Abstract:, Several thousand disarticulated remains together with a few complete enrolled specimens of the lower Cambrian eodiscoid trilobite Calodiscus lobatus (Hall, 1847) have been collected at two outcrop areas in Sweden. The material reveals new details of morphology and morphogenesis during ontogenetic development. Size-frequency analyses show that the material from the Fĺnĺn rivulet in Jämtland, central Sweden, represents a natural population dominated by juveniles, whereas the material from Gislövshammar in Scania, southern Sweden, has been sorted during postmortem transport. Three stages of protaspid development can be traced and defined as well as all subsequent ontogenetic stages for the cephalon, hypostome and pygidium. The early meraspid pygidium has a pronounced larval notch, which persists, though becoming progressively less distinct in later meraspides. The number of axial rings in the transitory pygidium increases throughout meraspid development until a third and final thoracic segment is liberated. During ontogeny the articulating half-rings are strongly developed, and both meraspides and holaspides were capable of full sphaeroidal enrollment and outstretched postures. The hypostome undergoes some dramatic modifications; in M0 the anterior margin is axe-shaped, by M1 the area of attachment greatly decreases and the hypostome becomes more elongated and pear-shaped, before attaining its adult form, which has an overall resemblance to that of polymerid trilobites. During ontogeny, the hypostome changes from a conterminant attachment to a natant condition, thereby mirroring hypostomal evolution within trilobites generally. The morphology, ontogeny, enrollment, hypostomal development and the presence of calcified protaspides suggest polymerid rather than agnostoid affinities of the eodiscoids. [source]


    THE MORPHOLOGY OF HYOLITHIDS AND ITS FUNCTIONAL IMPLICATIONS

    PALAEONTOLOGY, Issue 6 2005
    MÓNICA MARTÍ MUS
    Abstract:, The exceptionally preserved hyolithids Gompholites striatulus, Maxilites robustus, Maxilites snajdri and Maxilites sp. are described with particular emphasis on helen and muscle scar morphology. These two aspects of hyolithid morphology have remained controversial. In life position, each helen curved ventrally. When the operculum closed the aperture of the conch, each helen was locked at the commissure slit with its dorsal edge tilted forward. Inside the conch, it was held in the dorsal apertural plane and clear of the inner surface of the operculum. Previously unidentified muscle scars are described from both the operculum and the conch. Dorsal scars on the conch aperture held muscles directed to the operculum. Comparative study of the muscle insertion pattern indicates that hyolithids did not have serially arranged muscles and that all hyolithids may have had a common skeleto-muscular system. The arrangement of the muscle scars with respect to the helens suggests that the latter were capable of relatively complex movements and could have been used to propel the organism over the substrate. The general morphology and orientation of the helens suggests that in addition they functioned to stabilize the organism on the sea-floor. [source]


    USING OPTICAL COHERENCE TOMOGRAPHY TO EXAMINE THE SUBSURFACE MORPHOLOGY OF CHINESE GLAZES

    ARCHAEOMETRY, Issue 5 2009
    M.-L. YANG
    Optical coherence tomography (OCT), a new method for ceramics research, is a nondestructive, three-dimensional tomography system, which provides subsurface morphology visualization of samples based on the refractive index or dielectric constant differences in the target specimen. In this study, seven shards from different Chinese kilns of Song and Yuan dynasties (10,14th centuries) were scanned to visualize the subsurface morphology of their glazes. The images revealed unique phase assemblage modes in different samples. The results suggest OCT may be used to identify ceramics and provide information about their manufacturing technology. [source]


    Distorted Froude-scaled flume analysis of large woody debris

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2001
    Nicholas P. Wallerstein
    Abstract This paper presents the results of a movable-boundary, distorted, Froude-scaled hydraulic model based on Abiaca Creek, a sand-bedded channel in northern Mississippi. The model was used to examine the geomorphic and hydraulic impact of simplified large woody debris (LWD) elements. The theory of physical scale models is discussed and the method used to construct the LWD test channel is developed. The channel model had bed and banks moulded from 0·8 mm sand, and flow conditions were just below the threshold of motion so that any sediment transport and channel adjustment were the result of the debris element. Dimensions and positions of LWD elements were determined using a debris jam classification model. Elements were attached to a dynamometer to measure element drag forces, and channel adjustment was determined through detailed topographic surveys. The fluid drag force on the elements decreased asymptotically over time as the channel boundary eroded around the elements due to locally increased boundary shear stress. Total time for geomorphic adjustment computed for the prototype channel at the Q2 discharge (discharge occurring once every two years on average) was as short as 45 hours. The size, depth and position of scour holes, bank erosion and bars created by flow acceleration past the elements were found to be related to element length and position within the channel cross-section. Morphologies created by each debris element in the model channel were comparable with similar jams observed in the prototype channel. Published in 2001 John Wiley & Sons, Ltd. [source]


    The Role of Sulfur in the Synthesis of Novel Carbon Morphologies: From Covalent Y-Junctions to Sea-Urchin-Like Structures

    ADVANCED FUNCTIONAL MATERIALS, Issue 8 2009
    Jose´ M. Romo-Herrera
    Abstract A detailed characterization, using high resolution electron microscopy/microanalysis (SEM, TEM, HRTEM, and EDX), reveals tubular carbon nanostructures exhibiting complex and fascinating morphologies. The materials were obtained by sulfur-assisted chemical vapor deposition. It is demonstrated that S not only acts on the catalyst, but also can be detected in the carbon lattice of the nanostructures. The experimental data presented here confirms the critical role of S, which is responsible for inducing curvature and therefore influencing the final carbon nanostructure morphology. In particular, different types of covalent Y-junctions of CNTs and even sea urchin-like nanostructures were produced and their experimental conditions are listed and discussed. [source]


    Distinct Nanostructures from a Molecular Shuttle: Effects of Shuttling Movement on Nanostructural Morphologies

    ADVANCED FUNCTIONAL MATERIALS, Issue 1 2009
    Weidong Zhou
    Abstract A solvent driven molecular shuttle that contains a TCBD chromophore and in which the macrocycle can be positioned close to or far from the TCBD unit with a change of solvent is prepared. Several distinct nanostructures are obtained by control of the shuttling movement of the macrocycle: i) in a mixed solvent of CHCl3/n -C6H14 (1/1, v/v), the macrocycle locates at the peptide station, and interlaced nanofibers form as a result of the extended intermolecular dipole,dipole interactions of the TCBD units; ii) in a solvent of dimethyl sulfoxide, the macrocycle moves along the long alkyl-chain, and worm-like nanoparticles form because the macrocycle obstructs the intermolecular dipole,dipole interactions of the TCBD units. This system confirms that the molecular aggregation behaviors can be controlled by the shuttling movement of the macrocycle. Exploitation of the molecular shuttle to control the molecular aggregation behaviors will provide greater understanding in the field of molecular shuttle applications. [source]


    Poly(vinyl alcohol) Scaffolds with Tailored Morphologies for Drug Delivery and Controlled Release,

    ADVANCED FUNCTIONAL MATERIALS, Issue 17 2007
    C. Gutiérrez
    Abstract Poly(vinyl alcohol) (PVA) scaffolds are prepared by a cryogenic process that consists of the unidirectional freezing of a PVA solution. The scaffolds exhibit a microchanneled structure, the morphology of which (in terms of pore diameter, surface area, and thickness of matter accumulated between adjacent microchannels) can be finely tailored by the averaged molecular weight of PVA, the PVA concentration in the solution, and the freezing rate of the PVA solution. The resulting PVA scaffolds are suitable substrates for drug-delivery purposes, the drug release being controlled (from tens of minutes up to several days) by the morphology of the microchanneled structure. In,vitro experiments reveal the efficiency of PVA scaffolds for controlling the release of ciprofloxacin into a bacteria culture medium. [source]


    Co3O4 Nanostructures with Different Morphologies and their Field-Emission Properties,

    ADVANCED FUNCTIONAL MATERIALS, Issue 12 2007
    B. Varghese
    Abstract We report an efficient method to synthesize vertically aligned Co3O4 nanostructures on the surface of cobalt foils. This synthesis is accomplished by simply heating the cobalt foils in the presence of oxygen gas. The resultant morphologies of the nanostructures can be tailored to be either one-dimensional nanowires or two-dimensional nanowalls by controlling the reactivity and the diffusion rate of the oxygen species during the growth process. A possible growth mechanism governing the formation of such nanostructures is discussed. The field-emission properties of the as-synthesized nanostructures are investigated in detail. The turn-on field was determined to be 6.4 and 7.7,V,,m,1 for nanowires and nanowalls, respectively. The nanowire samples show superior field-emission characteristics with a lower turn-on field and higher current density because of their sharp tip geometry and high aspect ratio. [source]


    Gyroid Single Crystals: Nanostructured Calcite Single Crystals with Gyroid Morphologies (Adv. Mater.

    ADVANCED MATERIALS, Issue 38-39 2009
    39/2009)
    Single crystals typically assume a crystallographically distinct shape. Many biological organisms, however, synthesize single crystals with an intricate mescoscopic morphology that does not reflect the crystal symmetry. The cover shows a calcite single crystal with a bicontinuous gyroid morphology, which was obtained by calcite nucleation in a self-assembled polymer matrix in work reported by Ulli Steiner and co-workers on p. 3928. The characteristic size of the biomimetic structure is ,30 nm. The pattern in the title is the characteristic 211 plane of the gyroid morphology. [source]


    Nanostructured Calcite Single Crystals with Gyroid Morphologies

    ADVANCED MATERIALS, Issue 38-39 2009
    Alexander S. Finnemore
    Gyroid-structured calcite crystals are grown by templating though self-assembled copolymer films. The remarkable triply periodic minimal surface is perfectly replicated on the nanometer scale, while single crystallinity is maintained. This is a wholly synthetic route to a crystal morphology found in biological systems, only on a smaller length scale. [source]


    Block Copolymer Nanostructures: Nanoscopic Morphologies in Block Copolymer Nanorods as Templates for Atomic-Layer Deposition of Semiconductors (Adv. Mater.

    ADVANCED MATERIALS, Issue 27 2009
    27/2009)
    The frontispiece shows a TEM image of block copolymer nanorods exhibiting nanoscopic domain structures visualized by selective staining. The insets represent the methodology for producing semiconductor nanostructures reported by Yong Wang, Martin Steinhart, and co-workers on p. 2763. The first panel shows block copolymer nanorods, the second, the nanorods after conversion of the nanoscopic domain structure into a mesopore structure, and the third, the complex 1D semiconductor nanostructures obtained by ALD using the mesopores as templates. [source]


    Nanoscopic Morphologies in Block Copolymer Nanorods as Templates for Atomic-Layer Deposition of Semiconductors

    ADVANCED MATERIALS, Issue 27 2009
    Yong Wang
    Block-copolymer nanorods containing mesopore structures derived from confinement-induced nanoscopic morphologies were used as templates for atomic-layer deposition. Diffusion of the ALD precursors through the polymeric scaffold and deposition of ZnO on the walls of the internal mesopores yielded 1D ZnO nanostructures with hierarchical architectures containing helices and stacked doughnuts as structure motifs. [source]


    Anatase and Rutile TiO2 Macrocellular Foams: Air,Liquid Foaming Sol,Gel Process Towards Controlling Cell Sizes, Morphologies, and Topologies,

    ADVANCED MATERIALS, Issue 1 2005
    F. Carn
    Titania foams (see Figure) can be produced using a non-static air,liquid foaming sol,gel process where nitrogen is bubbled through a mixture of a surfactant and a sol,gel precursor. Either anatase or rutile phase mesoporous titania foams are produced upon thermal treatment. Macroscopic cell morphologies can be tuned by changing the air-to-liquid-foam ratios and the size of the nitrogen bubbles, while wall topologies can be varied by changing surfactant. [source]


    Morphologies and mechanical properties of HDPE induced by small amount of high-molecular-weight polyolefin and shear stress produced by dynamic packing injection molding

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2008
    Zhanchun Chen
    Abstract To better understand the effect of a small amount of high-molecular-weight polyethylene (HMWPE) on the mechanical properties and crystal morphology under the shear stress field, the dynamic packing injection molding (DPIM) was used to prepare the oriented pure polyethylene and its blends with 4% HMWPE. The experiment substantiated that the further improvement of tensile strength along the flow direction (MD) of high-density polyethylene (HDPE)/HMWPE samples was achieved, whereas the tensile strength along the transverse direction (TD) still substantially exceeded that of conventional molding. Tensile strength in both flow and TDs were highly enhanced, with improvements from 23 to 76 MPa in MD and from 23 to 31 MPa in TD, besides the toughness was highly improved. So, the samples of HDPE/HMWPE transformed from high strength and brittleness to high strength and toughness. The obtained samples were characterized via SEM and TEM. For HDPE/HMWPE, the lamellae of the one shish-kebab in the oriented region may be stretched into other shish-kebab structures, and one lamella enjoys two shish or even more. This unique crystal morphology could lead to no yielding and necking phenomena in the stress,strain curves of HDPE/HMWPE samples by DPIM. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


    Different Narrow QRS Morphologies in the Surface ECG: What is the Mechanism?

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2009
    LUCIO CAPULZINI M.D.
    No abstract is available for this article. [source]


    Remodeling of fracture callus in mice is consistent with mechanical loading and bone remodeling theory

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2009
    Hanna Isaksson
    Abstract During the remodeling phase of fracture healing in mice, the callus gradually transforms into a double cortex, which thereafter merges into one cortex. In large animals, a double cortex normally does not form. We investigated whether these patterns of remodeling of the fracture callus in mice can be explained by mechanical loading. Morphologies of fractures after 21, 28, and 42 days of healing were determined from an in vivo mid-diaphyseal femoral osteotomy healing experiment in mice. Bone density distributions from microCT at 21 days were converted into adaptive finite element models. To assess the effect of loading mode on bone remodeling, a well-established remodeling algorithm was used to examine the effect of axial force or bending moment on bone structure. All simulations predicted that under axial loading, the callus remodeled to form a single cortex. When a bending moment was applied, dual concentric cortices developed in all simulations, corresponding well to the progression of remodeling observed experimentally and resulting in quantitatively comparable callus areas of woven and lamellar bone. Effects of biological differences between species or other reasons cannot be excluded, but this study demonstrates how a difference in loading mode could explain the differences between the remodeling phase in small rodents and larger mammals. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 664,672, 2009 [source]


    Synthesis of Zinc Oxide Nanostructures with Controlled Morphologies Using a Simple Sonochemical Method

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2007
    Xi-peng Pu
    Zinc oxide (ZnO) nanostructures were synthesized by a simple sonochemical method without the assistance of an additional surfactant. The morphologies can simply be controlled only by changing the addition sequence of NH3·H2O. When NH3·H2O was added before or at the beginning of the ultrasonic treatment, a flower-like nanostructure and ellipsoidal particles self-assembled by nanorods were obtained, respectively. The strong visible emission implied high atomic defects. The emission intensity was dependent on the addition sequence of NH3·H2O greatly. [source]