Home About us Contact | |||
Morphological Level (morphological + level)
Selected AbstractsCataracts in experimentally diabetic mouse: morphological and apoptotic changesDIABETES OBESITY & METABOLISM, Issue 2 2005K. R. Hegde Aim:, The objective of these investigations was to extend our earlier study on the induction of cataracts in diabetic mice, a low aldose reductase (AR) animal model at morphological level. Previous studies were done primarily at biochemical level. Methods:, Diabetes was induced by intraperitoneal administration of streptozotocin. The lenses isolated after the establishment of diabetes were then subjected to histologic and electron microscopic studies. Results:, Morphological alterations were characterized by shrinkage, elongation and lobulization of the nuclei of the epithelial cells. This was associated with chromatin condensation and its margination. Similar structural aberrations were also observed in a significant number of the subepithelial fibre cells representing defect in fibre maturation. More interestingly, unlike that in other common animal models of diabetic cataract, such abnormally nucleated cells were also found to be prevalent in the posterior subcapsular region, a finding common in human diabetics also. Conclusion:, The present studies further affirm the suitability of the mouse model for a study of cataractogenesis induced by diabetes. Because of the findings reported herein, as well as the known biochemical similarity between the lenses of the mice and humans in respect of AR deficiency, contrary to the rat model where it is very high, use of this species is considered more useful towards understanding the basic aetiology as well as for evaluating the efficacy of various referred nutritional and metabolic antioxidants against such cataracts. [source] Alcohol-Induced Lipid and Morphological Changes in Chick Retinal DevelopmentALCOHOLISM, Issue 5 2004Yolanda Aguilera Abstract: Background: Alcohol exposure causes alterations in the lipid content of different organs and a reduction of long-chain fatty acids. During embryo development, the central nervous system is extremely vulnerable to the teratogenic effects of alcohol, and the visual system is particularly sensitive. Methods: White Leghorn chick embryos were injected with 10- and 20-,l alcohol doses into the yolk sac at day 6 of incubation. The lipid composition of the retina was analyzed in embryos at day 7 of incubation (E7), E11, E15, and E18. The percentages of phospholipids, free cholesterol, esterified cholesterol, diacylglycerides, and free fatty acids were estimated by using an Iatroscan thin layer chromatography flame ionization detector. Gas chromatography and mass spectrometry were used to determine fatty acid composition. The morphological study was performed at E7, E11, and E19 by means of semithin and immunohistochemical techniques. Results: In the retina, alcohol causes the total lipid content to change, with a remarkable increase in free cholesterol and a dramatic decrease in esterified cholesterol. Diacylglycerides and free fatty acids tend to increase. Phosphatidylcholine and phosphatidylethanolamine decrease, whereas phosphatidylserine, sphingomyelin, and phosphatidylinositol increase. The main fatty acids of the retina also undergo changes. At E7, myriotic acid increases, and oleic acid and polyunsaturated fatty acids such as arachidonic acid and docosahexaenoic acid decrease. From E18 onward, there is some recovery, except for fatty acids, which recover earlier. From a morphological point of view, alcohol effects on retinal development are various: increase of intercellular spaces in all cell layers, pyknosis with loss of cellularity in the inner nuclear cell layer and ganglion cell layer, retarded or disorderly cell migration, early cell differentiation, and loss of immunoreactivity for myelin oligodendrocyte,specific protein. Conclusions: Acute alcohol exposure during embryo development causes the lipid composition of the retina to change, with a trend to recovery in the last stages. These alterations are in line with the changes observed at a morphological level. [source] Variation and context of yawns in captive chimpanzees (Pan troglodytes)AMERICAN JOURNAL OF PRIMATOLOGY, Issue 3 2010Sarah-Jane Vick Abstract Primate yawns are usually categorized according to context (e.g. as a threat, anxious, or rest yawn), but there has been little consideration of whether these yawns are best regarded as a unitary behavior that only differs with respect to the context in which it is observed. This study examined the context and precise morphology of yawns in a group of 11 captive chimpanzees. Focal video sampling was used to describe the morphology and intensity of 124 yawns using ChimpFACS, a system for coding facial movements. Two distinct forms of yawn were identified, a full yawn and a yawn which is modified by additional actions that reduce the mouth aperture. These modified yawns may indicate some degree of voluntary control over facial movement in chimpanzees and, consequently, multiple functions of yawning according to context. To assess context effects, mean activity levels (resting, locomotion, and grooming) and scratching rates were compared one minute before and after each yawn. Locomotion was significantly increased following both types of yawn, whereas scratching rates significantly increased following modified yawns but decreased following full yawns. In terms of individual differences, males did not yawn more than females, although male yawns were of higher intensity, both in the degree of mouth opening and in the amount of associated head movement. These data indicate that yawning is associated with a change in activity levels in chimpanzees, but only modified yawns may be related to increased arousal. Different types of yawn can therefore be differentiated at the morphological level as well as context level. Am. J. Primatol. 72:262,269, 2010. © 2009 Wiley-Liss, Inc. [source] Genetic, Morphological, and Ecological Diversity of Spatially Separated Clones of Meseres corlissi Petz & Foissner, 1992 (Ciliophora, Spirotrichea)THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 4 2008THOMAS WEISSE ABSTRACT. We investigated the intraspecific variation of the spirotrich freshwater ciliate Meseres corlissi at the level of genes (SSrDNA, ITS), morphology (14 characters), and ecophysiology (response to temperature and pH). Five of the eight clonal M. corlissi cultures isolated from five localities on four continents were studied at all levels. The null hypothesis was that geographic distance plays no role: M. corlissi lacks biogeography. The intraspecific variation was low at the genetic level (0%,4%), moderate at the morphological level (5%,15%), and high at the ecophysiological level (10%,100%). One clone, isolated from subtropical China, differed significantly at all levels from all other clones, suggesting limited dispersal and local adaptation among M. corlissi. However, other clones from distant areas, such as Australia and Austria, were genetically identical and differed only slightly in morphology and temperature response. We speculate that our findings may be typical for rare species; the chances may be equally high for both global dispersal of most and local adaptation of some populations in areas where dispersal has been permanently or temporarily reduced. [source] The use of volunteers for conducting sponge biodiversity assessments and monitoring using a morphological approach on Indo-Pacific coral reefsAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2007James J. Bell Abstract 1.Sponges are an important component of coral reef ecosystems, but even though they are widespread with the ability to significantly influence other benthic community members they rarely feature to any great extent in current monitoring or biodiversity assessment programmes conducted by volunteer and professional groups. This exclusion is usually because of the taxonomic problems associated with sponge identification. 2.A potential alternative to monitoring temporal or spatial change in sponge assemblages and assessing biodiversity levels is to characterize sponges using morphologies present rather than collecting species data. Quantifying sponge biodiversity (for monitoring and biodiversity assessments) at the morphological level is less time and resource consuming than collecting species data and more suited to groups with little training and experience of sponge taxonomy or in regions where detailed taxonomic information on sponges is sparse. 3.This paper considers whether the same differences and similarities in sponge richness and assemblage composition can be identified using species and morphological data in response to environmental gradients at two coral reef ecosystems in south-east Sulawesi, Indonesia, and whether volunteers can be used to reliably collect morphological information. Sponge morphologies were classified into 14 groups and different morphological assemblages were found by the author at the two sites and between depth intervals. Comparisons of sponge species and morphological composition data showed that common patterns in assemblage structuring and richness could be identified irrespective of whether morphological or species data were used. In addition, a positive linear relationship was found between sponge species and morphological richness. 4.The morphological data recorded by volunteer divers (n=10) were compared with that collected by the author. Although volunteers recorded fewer sponges than the author (approximately 15% less), missing mainly small encrusting specimens, similar assemblage structure could be identified from both the volunteers' and the author's data. 5.The results showed that the same differences in sponge assemblages between sites and depths could be identified from both species and morphological data. In addition, these morphological data could be reliably collected by volunteer divers. Copyright © 2006 John Wiley & Sons, Ltd. [source] Mild stress during development affects the phenotype of great tit Parus major nestlings: a challenge experimentBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2010WILLEM TALLOEN Conditions experienced during early development may affect both adult phenotype and performance later during life. Phenotypic traits may hence be used to indicate past growing conditions and predict future survival probabilities. Relationships between phenotypic markers and future survival are, however, highly heterogeneous, possibly because poor- and high-quality individuals cannot be morphologically discriminated when developing under good environmental conditions. Sub-optimal breeding conditions, in contrast, may unmask poor-quality individuals in a measurable way at the morphological level. We thus predict stronger associations between phenotype and performance under stress. In this field study, we test this hypothesis, experimentally challenging the homeostasis of great tit (Parus major) nestlings by short-term deprivation of parental care, which had no immediate effect on nestling fitness. The experiment was replicated during two subsequent breeding seasons with contrasting ambient weather conditions. Experimental (short-term) stress affected tarsus growth but not residual mass at fledging, whereas ambient (continuous) stress affected residual mass but not tarsus growth. Short-term stress effects on tarsus length and tarsus fluctuating asymmetry were only apparent when ambient conditions were unfavourable. Residual mass and hatching date, but none of the other phenotypic traits, predicted local survival, whereby the strength of the relationship did not vary between both years. Because effects of stress on developmental homeostasis are likely to be trait-specific and condition-dependent, studies on the use of phenotypic markers for individual fitness should integrate multiple traits comprising different levels of developmental complexity. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 103,110. [source] Mining plant diversity: Gerbera as a model system for plant developmental and biosynthetic researchBIOESSAYS, Issue 7 2006Teemu H. Teeri Gerbera hybrida is a member of the large sunflower family (Asteraceae). Typical of Asteraceae, Gerbera bears different types of flowers in its inflorescence. The showy marginal flowers comprise elongate, ligulate corollas that are female, whereas the central and inconspicuous disc flowers are complete, with both male and female organs. As such, Gerbera offers great potential for comparative developmental research within a single genotype. Moreover, different Gerbera varieties show an impressive spectrum of color patterns, directly displaying responses to developmental cues at all important morphological levels (flower type, flower organ and within organs). Further, Gerbera harbors an arsenal of Asteraceae-type secondary metabolites, not present in other model plants. With powerful reverse genetics methods, a large collection of EST sequences and a new cDNA microarray, Gerbera has become a model plant of the sunflower family. BioEssays 28: 756,767, 2006. © 2006 Wiley Periodicals, Inc. [source] |