Morphological Disparity (morphological + disparity)

Distribution by Scientific Domains


Selected Abstracts


Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes

JOURNAL OF SYSTEMATICS EVOLUTION, Issue 5 2009
Jochen HEINRICHS
Abstract, More than 200 research papers on the molecular phylogeny and phylogenetic biogeography of bryophytes have been published since the beginning of this millenium. These papers corroborated assumptions of a complex genetic structure of morphologically circumscribed bryophytes, and raised reservations against many morphologically justified species concepts, especially within the mosses. However, many molecular studies allowed for corrections and modifications of morphological classification schemes. Several studies reported that the phylogenetic structure of disjunctly distributed bryophyte species reflects their geographical ranges rather than morphological disparities. Molecular data led to new appraisals of distribution ranges and allowed for the reconstruction of refugia and migration routes. Intercontinental ranges of bryophytes are often caused by dispersal rather than geographical vicariance. Many distribution patterns of disjunct bryophytes are likely formed by processes such as short distance dispersal, rare long distance dispersal events, extinction, recolonization and diversification. [source]


The Ordovician Biodiversification: revolution in the oceanic trophic chain

LETHAIA, Issue 2 2008
THOMAS SERVAIS
The Early Palaeozoic phytoplankton (acritarch) radiation paralleled a long-term increase in sea level between the Early Cambrian and the Late Ordovician. In the Late Cambrian, after the SPICE ,13Ccarb excursion, acritarchs underwent a major change in morphological disparity and their taxonomical diversity increased to reach highest values during the Middle Ordovician (Darriwilian). This highest phytoplankton diversity of the Palaeozoic was possibly the result of palaeogeography (greatest continental dispersal) and major orogenic and volcanic activity, which provided maximum ecospace and large amounts of nutrients. With its warm climate and high atmospheric CO2 levels, the Ordovician was similar to the Cretaceous: a period when phytoplankton diversity was at its maximum during the Mesozoic. With increased phytoplankton availability in the Late Cambrian and Ordovician a radiation of zooplanktonic organisms took place at the same time as a major diversification of suspension feeders. In addition, planktotrophy originated in invertebrate larvae during the Late Cambrian,Early Ordovician. These important changes in the trophic chain can be considered as a major palaeoecological revolution (part of the rise of the Palaeozoic Evolutionary Fauna of Sepkoski). There is now sufficient evidence that this trophic chain revolution was related to the diversification of the phytoplankton, of which the organic-walled fraction is partly preserved. [source]


NEW CLADID AND FLEXIBLE CRINOIDS FROM THE MISSISSIPPIAN (TOURNAISIAN, IVORIAN) OF ENGLAND AND WALES

PALAEONTOLOGY, Issue 5 2007
THOMAS W. KAMMER
Abstract:, The modern study of fossil crinoids began with J. S. Miller who, in 1821, described specimens from southern England, nearby Wales and other regions, and named several common Early Carboniferous genera. Later, in 1950,60, James Wright monographed all known Early Carboniferous crinoids from the British Isles. In spite of such previous scrutiny, we recognize here two new genera among species already described: Glamorganocrinus gen. nov. (type species: Ophiurocrinus gowerensis Wright, 1960) from South Wales and Mendipocrinus gen. nov. (type species: Poteriocrinus latifrons Austin and Austin, 1847) from southern England. These new genera increase the number of advanced cladid genera in the Ivorian Substage of the Tournaisian in western Europe to 18, and the total number of crinoid genera to 36. A review of species assigned to Mespilocrinus has led to the recognition of M. granulifer De Koninck and LeHon, 1854 as a nomen dubium. A new species of Mespilocrinus, M. wrighti sp. nov., is described from the Ivorian of South Wales; this is the most highly derived species of the genus, as based on a phylogenetic analysis including ten species and 13 characters, with Pycnosaccus as the outgroup. A single, well-ordered tree resulted from this analysis. Interpretation of this tree suggests that the centre of evolution for Mespilocrinus was North America, where three species appeared during the Kinderhookian (early Tournaisian), rapidly achieving morphological disparity within the genus. This radiation event was part of the overall explosive radiation of crinoids following the Late Devonian mass extinction event when crinoid diversity was at a global minimum during the Frasnian. Recovery began during the Famennian, followed by an explosive radiation in the Tournaisian. [source]


Mantophasmatodea and phylogeny of the lower neopterous insects

CLADISTICS, Issue 3 2005
Matthew D. Terry
Polyneoptera is a name sometimes applied to an assemblage of 11 insect orders comprising the lower neopterous or "orthopteroid" insects. These orders include familiar insects such as Orthoptera (grasshoppers), Blattodea (roaches), Isoptera (termites) (Mantodea) praying mantises, Dermaptera (earwigs), Phasmatodea (stick insects), Plecoptera (stoneflies), as well as the more obscure, Embiidina (web-spinners), Zoraptera (angel insects) and Grylloblattodea (ice-crawlers). Many of these insect orders exhibit a high degree of morphological specialization, a condition that has led to multiple phylogenetic hypotheses and little consensus among investigators. We present a phylogenetic analysis of the polyneopteran orders representing a broad range of their phylogenetic diversity and including the recently described Mantophasmatodea. These analyses are based on complete 18S rDNA, 28S rDNA, Histone 3 DNA sequences, and a previously published morphology matrix coded at the ordinal level. Extensive analyses utilizing different alignment methodologies and parameter values across a majority of possible ranges were employed to test for sensitivity of the results to ribosomal alignment and to explore patterns across the theoretical alignment landscape. Multiple methodologies support the paraphyly of Polyneoptera, the monophyly of Dictyoptera, Orthopteroidea (sensu Kukalova-Peck; i.e. Orthoptera + Phasmatodea + Embiidina), and a group composed of Plecoptera + Dermaptera + Zoraptera. Sister taxon relationships between Embiidina + Phasmatodea in a group called "Eukinolabia", and Dermaptera + Zoraptera ("Haplocercata") are also supported by multiple analyses. This analysis also supports a sister taxon relationship between the newly described Mantophasmatodea, which are endemic to arid portions of southern Africa, and Grylloblattodea, a small order of cryophilic insects confined to the north-western Americas and north-eastern Asia, in a group termed "Xenonomia". This placement, coupled with the morphological disparity of the two groups, validates the ordinal status of Mantophasmatodea. © The Willi Hennig Society 2005. [source]