Home About us Contact | |||
Morphological Defects (morphological + defect)
Selected AbstractsNovel genes involved in Ciona intestinalis embryogenesis: Characterization of gene knockdown embryosDEVELOPMENTAL DYNAMICS, Issue 7 2007Mayuko Hamada Abstract The sequenced genome of the urochordate ascidian Ciona intestinalis contains nearly 2,500 genes that have vertebrate homologues, but their functions are as yet unknown. To identify novel genes involved in early chordates embryogenesis, we previously screened 200 Ciona genes by knockdown experiments using specific morpholino oligonucleotides and found that suppression of the translation of 40 genes caused embryonic defects (Yamada et al. [2003] Development 130:6485,6495). We have since examined an additional 304 genes, that is, screening 504 genes overall, and a total of 111 genes showed morphological defects when gene function was suppressed. We further examined the role of these genes in the differentiation of six major tissues of the embryo: endoderm, muscle, epidermis, neural tissue, mesenchyme, and notochord. Based on the similarity of phenotypes of gene knockdown embryos, genes were categorized into several groups, with the suggestion that the genes within a given group are involved in similar developmental processes. For example, five were shown to be novel genes that are likely involved in ,-catenin,mediated endoderm formation. The type of large-scale screening used is, therefore, a powerful approach to identify novel genes with significant developmental functions, the details of which will be determined in future studies. Developmental Dynamics 236:1820,1831, 2007. © 2007 Wiley-Liss, Inc. [source] The vesicular integral protein-like gene is essential for development of a mechanosensory system in zebrafishDEVELOPMENTAL NEUROBIOLOGY, Issue 12 2008Mabel Chong Abstract The zebrafish hi472 mutation is caused by a retroviral insertion into the vesicular integral protein-like gene, or zVIPL, a poorly studied lectin implicated in endoplasmic reticulum (ER)-Golgi trafficking. A mutation in the shorter isoform of zVIPL (zVIPL-s) results in a reduction of mechanosensitivity and consequent loss of escape behavior. Here we show that motoneurons and hindbrain reticulospinal neurons, which normally integrate mechanosensory inputs, failed to fire in response to tactile stimuli in hi472 larvae, suggesting a perturbation in sensory function. The hi472 mutant larvae in fact suffered from a severe loss of functional neuromasts of the lateral line mechanosensory system, a reduction of zVIPL labeling in support cells, and a reduction or even a complete loss of hair cells in neuromasts. The Delta-Notch signaling pathway is implicated in cellular differentiation of neuromasts, and we observed an increase in Notch expression in neuromasts of hi472 mutant larvae. Treatment of hi472 mutant larvae with DAPT, an inhibitor of Notch signaling, or overexpression of the Notch ligand deltaB in hi472 mutant blastocysts produced partial rescue of the morphological defects and of the startle response behavior. We conclude that zVIPL-s is a necessary component of Delta-Notch signaling during neuromast development in the lateral line mechanosensory system. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source] Methanol exposure interferes with morphological cell movements in the Drosophila embryo and causes increased apoptosis in the CNSDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2004Dervla M. Mellerick Abstract Despite the significant contributions of tissue culture and bacterial models to toxicology, whole animal models for developmental neurotoxins are limited in availability and ease of experimentation. Because Drosophila is a well understood model for embryonic development that is highly accessible, we asked whether it could be used to study methanol developmental neurotoxicity. In the presence of 4% methanol, approximately 35% of embryos die and methanol exposure leads to severe CNS defects in about half those embryos, where the longitudinal connectives are dorsally displaced and commissure formation is severely reduced. In addition, a range of morphological defects in other germ layers is seen, and cell movement is adversely affected by methanol exposure. Although we did not find any evidence to suggest that methanol exposure affects the capacity of neuroblasts to divide or induces inappropriate apoptosis in these cells, in the CNS of germ band retracted embryos, the number of apoptotic nuclei is significantly increased in methanol-exposed embryos in comparison to controls, particularly in and adjacent to the ventral midline. Apoptosis contributes significantly to methanol neurotoxicity because embryos lacking the cell death genes grim, hid, and reaper have milder CNS defects resulting from methanol exposure than wild-type embryos. Our data suggest that when neurons and glia are severely adversely affected by methanol exposure, the damaged cells are cleared by apoptosis, leading to embryonic death. Thus, the Drosophila embryo may prove useful in identifying and unraveling mechanistic aspects of developmental neurotoxicity, specifically in relation to methanol toxicity. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 308,318, 2004 [source] Hypoplasia of the arcuate nucleus and maternal smoking during pregnancy in sudden unexplained perinatal and infant deathNEUROPATHOLOGY, Issue 4 2004Anna Maria Lavezzi Maternal smoking during pregnancy is the most important risk factor for sudden perinatal and infant death in more industrialized countries. The frequent observation of hypoplasia of the arcuate nucleus in the brainstem of these victims prompted the verification of whether maternal cigarette smoking could be related to defective development of this nucleus during intrauterine life, by affecting the expression of specific genes involved in its developmental process. In serial sections of the brainstem of 54 cases of sudden and unexplained fetal and infant deaths (13 stillbirths, 7 neonatal deaths and 34 sudden infant death syndrome (SIDS) victims), morphological and morphometrical analysis was used to observe the different structural alterations of the arcuate nucleus (bilateral hypoplasia, monolateral hypoplasia, partial hypoplasia, delayed neuronal maturation and decreased neuronal density) detected in 24 cases (44%). Correlating this finding with smoking in pregnancy, a significantly increased incidence of cytoarchitectural alterations of the arcuate nucleus was found in stillborns and SIDS victims with smoker mothers compared to victims with non-smoker mothers. Moreover, the observation of a wide range of developing morphological defects of the arcuate nucleus related to maternal smoking led to the hypothesis that the constituents of the gas phase in cigarette smoke could directly affect the expression of genes involved in the development of this nucleus, such as the homeobox En-2 gene. [source] Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in ArabidopsisTHE PLANT JOURNAL, Issue 1 2008Kadunari Igari Summary Possible links between plant defense responses and morphogenesis have been postulated, but their molecular nature remains unknown. Here, we introduce the Arabidopsis semi-dominant mutant uni-1D with morphological defects. UNI encodes a coiled-coil nucleotide-binding leucine-rich-repeat protein that belongs to the disease resistance (R) protein family involved in pathogen recognition. The uni-1D mutation causes the constitutive activation of the protein, which is stabilized by the RAR1 function in a similar way as in other R proteins. The uni-1D mutation induces the upregulation of the Pathogenesis-related gene via the accumulation of salicylic acid, and evokes some of the morphological defects through the accumulation of cytokinin. The rin4 knock-down mutation, which causes the constitutive activation of two R proteins, RPS2 and RPM1, induces an upregulation of cytokinin-responsive genes and morphological defects similar to the uni-1D mutation, indicating that the constitutive activation of some R proteins alters morphogenesis through the cytokinin pathway. From these data, we propose that the modification of the cytokinin pathway might be involved in some R protein-mediated responses. [source] Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent mannerTHE PLANT JOURNAL, Issue 1 2006Sandra Kuusk Summary Gene duplication events, and the subsequent functional divergence of duplicates, are believed to be important evolutionary agents, driving morphological diversification. We have studied the structural and functional diversification of members of a plant-specific gene family in Arabidopsis thaliana by analysing mutant phenotypes, expression patterns and phylogeny. The SHI gene family comprises ten members that encode proteins with a RING finger-like zinc finger motif. We show that, despite being highly divergent in sequence, except in two conserved regions, many of the SHI -related genes are partially redundant in function and synergistically promote gynoecium, stamen and leaf development in Arabidopsis. Gynoecia of the loss-of-function sty1-1 mutant display subtle morphological defects, and, although mutations in the related STY2, SHI, SRS3, SRS4, SRS5, SRS7 and LRP1 genes have no apparent effect on gynoecium development, the sty1-1 mutant phenotype is gradually enhanced in double, triple, quadruple and quintuple mutant combinations, suggesting a remarkably extensive functional conservation within the family, which appears to be based on dosage dependency and protection against dominant negative mutations. In multiple mutant lines, all marginal tissues in the apical part of the gynoecium are dramatically reduced or missing, and our data indicate that SHI family members may promote formation of these tissues downstream of the transcriptional co-repressor LEUNIG (LUG). [source] |