Home About us Contact | |||
Morphogenetic Movements (morphogenetic + movement)
Selected AbstractsLocal activation of protein kinase A inhibits morphogenetic movements during Xenopus gastrulationDEVELOPMENTAL DYNAMICS, Issue 1 2003Byung-Ho Song Abstract cAMP-dependent protein kinase (PKA) has various biological roles in many organisms. However, little is known about its role in the developmental processes of vertebrates. In this study, we describe the functional analysis of PKA during gastrulation movements in Xenopus laevis. Overexpression of constitutively active PKA (cPKA) in the dorsal equatorial region of the embryo affects morphogenetic movement during gastrulation. We also show that intrinsic differences of PKA activities along the dorsoventral axis are set up and the level of PKA activity on the dorsal region is lower than that on the ventral region from late blastula to gastrula stages. In addition, PKA activation in animal explants inhibits activin-induced elongation. In cPKA-injected embryos, there were no changes in the expressions of markers involved in mesoderm specification, although the correct expression domains of these genes were altered. The effects of PKA activation can be restored by coexpression of PKI, a pseudosubstrate of PKA. We further analyzed the effects of PKA activation on the behavior of migratory gastrulating cells in vitro. Expression of cPKA in head mesoderm cells causes less polarized and/or randomized migration as demonstrated by a directional cell migration assay. Finally, we show that RhoA GTPase lies downstream of PKA, affecting activin-induced convergent extension movements. Taken together, these results suggest that overexpressed PKA can modulate a pathway responsible for morphogenetic movements during Xenopus gastrulation. Developmental Dynamics 227:91,103, 2003. © 2003 Wiley-Liss, Inc. [source] An enhancer sequence directs LacZ expression to developing pharyngeal endoderm in transgenic miceGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2001Hema Parmar Abstract Summary: The murine Hoxc-6 homeobox gene comprises three exons with two distinct promoters (PRI and PRII) located 9 kb apart. To characterise the PRII promoter, a region 3 kb upstream of the transcription start site was sequenced, and an Antananapedia-like consensus binding sequence was found (Coletta et al., 1991). A LacZ reporter gene construct, containing three copies of this sequence, directs highly specific expression in cells forming pharyngeal endoderm in transgenic mice. Expression was first detected in a few individual anterior endoderm cells at E7.5, which increase in number up to E9.5, where expression was clearly visible in the pharyngeal endoderm. Expression of the endodermal genes HNF3,, Pax-9, Shh, and Nkx2.5 showed colocalization with the LacZ -positive cells in the foregut and pharyngeal endoderm. This novel enhancer provides a means of tracking the morphogenetic movement of endodermal cells fated to form the foregut. genesis 31:57,63, 2001. © 2001 Wiley-Liss, Inc. [source] Brachyury -downstream notochord genes and convergent extension in Ciona intestinalis embryosDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2007Kohji Hotta Formation of the chordate body is accomplished by a complex set of morphogenetic movements including convergent extension of notochord cells. In the ascidian Ciona intestinalis, Brachyury plays a key role in the formation of the notochord, and more than 30 Bra-downstream notochord genes have been identified. In the present study, we examined the effects of functional suppression of nine Bra -downstream notochord genes, which include Ci-PTP, Ci-ACL, Ci-prickle, Ci-netrin, Ci-trop, Ci-Noto3, Ci-ASAK, Ci-ERM and Ci-pellino. When the function of the first two genes (Ci-PTP and Ci-ACL) was suppressed with specific morpholinos, the notochord cells failed to converge, while functional suppression of Ci-prickle resulted in a failure of intercalation, and therefore the cells in these three types of embryo remained in the mid-dorsal region of the embryo. Functional suppression of the next four genes (Ci-netrin, Ci-trop, Ci-Noto3 and Ci-ASAK) resulted in the partial defect of intercalation, and the notochord did not consist of a single row. In addition, when the function of the last two genes (Ci-ERM and Ci-pellino) was suppressed, notochord cells failed to elongate in the embryo, even though convergence/extension took place normally. These results indicate that many Bra -downstream notochord genes are involved in convergence/extension of the embryo. [source] ,-Microseminoprotein-related molecules may participate in formation of the mesoderm in the chick embryoDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2003Aditi Karandikar It has previously been shown that human ,-microseminoprotein enhances development of mesodermal structures in the chick embryo. The present study was carried out to elucidate the mechanism of action of human ,-microseminoprotein in the chick embryo. ,-Microseminoprotein brought about significant modulation of expression of Brachyury in gastrulating embryos. In approximately 50% of the treated embryos, Brachyury expression was enhanced around the Hensen's node. These cells not only expressed higher levels of Brachyury, but also appeared to switch off Brachyury expression prematurely, postinvagination. The spatial modulation of Brachyury is not clearly reflected in the northern blots, indicating that ,-microseminoprotein treatment results in redistribution of available transcripts or that the upregulation is compensated for by early switching off of Brachyury postinvagination. Because higher levels of Brachyury during gastrulation are believed to result in early exit of cells from the primitive streak, ,-microseminoprotein treatment appeared to have stimulated morphogenetic movements by upregulating Brachyury around the Hensen's node. This deduction was confirmed by scanning electron microscopic analysis that showed that altered morphogenetic movements accompany modulation of Brachyury. The specific responses elicited by ,-microseminoprotein indicate presence of a structurally related molecule in the chick. By western blotting, similar molecules were indeed detected in the chicken seminal plasma and in chick embryos. These data strongly suggest that ,-microseminoprotein-related molecule(s) participates in mesoderm formation in the chick embryo. [source] Expression of zebrafish nos2b surrounds oral cavityDEVELOPMENTAL DYNAMICS, Issue 6 2008Kar-Lai Poon Abstract Inducible nitric oxide synthase (NOS2) catalyzes the production of nitric oxide (NO), and is one of the factors establishing innate immunity. In zebrafish, Nos2 is represented by nos2a and nos2b. Here, we report the cloning and expression pattern of the zebrafish nos2b gene, which does not seem to participate in induced immune response. nos2b was mapped to zebrafish linkage group 15. The spatial and temporal expression pattern of nos2b in embryonic zebrafish was analyzed by whole-mount in situ hybridization. nos2b is expressed constitutively in two primordia located along the ventral midline. The first group of cells contributes to the neurohypophysis. Initially at the level of the ventral hindbrain, the second group of cells migrates closely with the thyroid primordium to its final position at the basihyal by 3 dpf. Thus, the analysis of expression pattern of nos2b reveals complex morphogenetic movements resulting in its expression surrounding the oral cavity. Developmental Dynamics 237:1662,1667, 2008. © 2008 Wiley-Liss, Inc. [source] Local activation of protein kinase A inhibits morphogenetic movements during Xenopus gastrulationDEVELOPMENTAL DYNAMICS, Issue 1 2003Byung-Ho Song Abstract cAMP-dependent protein kinase (PKA) has various biological roles in many organisms. However, little is known about its role in the developmental processes of vertebrates. In this study, we describe the functional analysis of PKA during gastrulation movements in Xenopus laevis. Overexpression of constitutively active PKA (cPKA) in the dorsal equatorial region of the embryo affects morphogenetic movement during gastrulation. We also show that intrinsic differences of PKA activities along the dorsoventral axis are set up and the level of PKA activity on the dorsal region is lower than that on the ventral region from late blastula to gastrula stages. In addition, PKA activation in animal explants inhibits activin-induced elongation. In cPKA-injected embryos, there were no changes in the expressions of markers involved in mesoderm specification, although the correct expression domains of these genes were altered. The effects of PKA activation can be restored by coexpression of PKI, a pseudosubstrate of PKA. We further analyzed the effects of PKA activation on the behavior of migratory gastrulating cells in vitro. Expression of cPKA in head mesoderm cells causes less polarized and/or randomized migration as demonstrated by a directional cell migration assay. Finally, we show that RhoA GTPase lies downstream of PKA, affecting activin-induced convergent extension movements. Taken together, these results suggest that overexpressed PKA can modulate a pathway responsible for morphogenetic movements during Xenopus gastrulation. Developmental Dynamics 227:91,103, 2003. © 2003 Wiley-Liss, Inc. [source] Morphogenetic domains in the yolk syncytial layer of axiating zebrafish embryosDEVELOPMENTAL DYNAMICS, Issue 4 2001Leonard A. D'Amico Abstract The yolk syncytial layer (YSL) of the teleostean yolk cell is known to play important roles in the induction of cellular mesendoderm, as well as the patterning of dorsal tissues. To determine how this extraembryonic endodermal compartment is subdivided and morphologically transformed during early development, we have examined collective movements of vitally stained YSL nuclei in axiating zebrafish embryos by using four-dimensional confocal microscopy. During blastulation, gastrulation, and early segmentation, zebrafish YSL nuclei display several highly patterned movements, which are organized into spatially distinct morphogenetic domains along the anterior-posterior and dorsal-ventral axes. During the late blastula period, with the onset of epiboly, nuclei throughout the YSL initiate longitudinal movements that are directed along the animal-vegetal axis. As epiboly progresses, nuclei progressively recede from the advancing margin of the epibolic YSL. However, a small group of nuclei is retained at the YSL margin to form a constricting blastoporal ring. During mid-gastrulation, YSL nuclei undergo convergent-extension behavior toward the dorsal midline, with a subset of nuclei forming an axial domain that underlies the notochord. These highly patterned movements of YSL nuclei share remarkable similarities to the morphogenetic movements of deep cells in the overlying zebrafish blastoderm. The macroscopic shape changes of the zebrafish yolk cell, as well as the morphogenetic movements of its YSL nuclei, are homologous to several morphogenetic behaviors that are regionally expressed within the vegetal endodermal cell mass of gastrulating Xenopus embryos. In contrast to the cellular endoderm of Xenopus, the dynamics of zebrafish YSL show that a syncytial endodermal germ layer can express a temporal sequence of morphogenetic domains without undergoing progressive steps of cell fate restriction. © 2001 Wiley-Liss, Inc. [source] Disease-associated casein kinase I , mutation may promote adenomatous polyps formation via a Wnt/,-catenin independent mechanismINTERNATIONAL JOURNAL OF CANCER, Issue 5 2007I-Chun Tsai Abstract The Wnt signaling pathway is critical for embryonic development and is dysregulated in multiple cancers. Two closely related isoforms of casein kinase I (CKI, and ,) are positive regulators of this pathway. We speculated that mutations in the autoinhibitory domain of CKI,/, might upregulate CKI,/, activity and hence Wnt signaling and increase the risk of adenomatous polyps and colon cancer. Exons encoding the CKI, and CKI, regulatory domains were sequenced from DNA obtained from individuals with adenomatous polyps and a family history of colon cancer unaffected by familial adenomatous polyposis or hereditary nonpolyposis colorectal cancer (HNPCC). A CKI, missense mutation, changing a highly conserved residue, Arg324, to His (R324H), was found in an individual with large and multiple polyps diagnosed at a relatively young age. Two findings indicate that this mutation is biologically active. First, ectopic ventral expression of CKI,(R324H) in Xenopus embryos results in secondary axis formation with an additional distinctive phenotype (altered morphological movements) similar to that seen with unregulated CKI,. Second, CKI,(R324H) is more potent than wildtype CKI, in transformation of RKO colon cancer cells. Although the R324H mutation does not significantly change CKI, kinase activity in an in vitro kinase assay or Wnt/,-catenin signal transduction as assessed by a ,-catenin reporter assay, it alters morphogenetic movements via a ,-catenin-independent mechanism in early Xenopus development. This novel human CKI, mutation may alter the physiological role and enhance the transforming ability of CKI, through a Wnt/,-catenin independent mechanism and thereby influence colonic adenoma development. © 2006 Wiley-Liss, Inc. [source] |