Home About us Contact | |||
Moran's I (moran + i)
Selected AbstractsSpatial correlations of Diceroprocta apache and its host plants: evidence for a negative impact from Tamarix invasionECOLOGICAL ENTOMOLOGY, Issue 1 2002Aaron R. Ellingson Abstract 1. The hypothesis that the habitat-scale spatial distribution of the Apache cicada Diceroprocta apache Davis is unaffected by the presence of the invasive exotic saltcedar Tamarix ramosissima was tested using data from 205 1-m2 quadrats placed within the flood-plain of the Bill Williams River, Arizona, U.S.A. Spatial dependencies within and between cicada density and habitat variables were estimated using Moran's I and its bivariate analogue to discern patterns and associations at spatial scales from 1 to 30 m. 2. Apache cicadas were spatially aggregated in high-density clusters averaging 3 m in diameter. A positive association between cicada density, estimated by exuvial density, and the per cent canopy cover of a native tree, Goodding's willow Salix gooddingii, was detected in a non-spatial correlation analysis. No non-spatial association between cicada density and saltcedar canopy cover was detected. 3. Tests for spatial cross-correlation using the bivariate IYZ indicated the presence of a broad-scale negative association between cicada density and saltcedar canopy cover. This result suggests that large continuous stands of saltcedar are associated with reduced cicada density. In contrast, positive associations detected at spatial scales larger than individual quadrats suggested a spill-over of high cicada density from areas featuring Goodding's willow canopy into surrounding saltcedar monoculture. 4. Taken together and considered in light of the Apache cicada's polyphagous habits, the observed spatial patterns suggest that broad-scale factors such as canopy heterogeneity affect cicada habitat use more than host plant selection. This has implications for management of lower Colorado River riparian woodlands to promote cicada presence and density through maintenance or creation of stands of native trees as well as manipulation of the characteristically dense and homogeneous saltcedar canopies. [source] The influence of stream invertebrate composition at neighbouring sites on local assemblage compositionFRESHWATER BIOLOGY, Issue 2 2005R. A. SANDERSON Summary 1. The composition of freshwater invertebrate assemblages at a location is determined by a range of physico-chemical and biotic factors in the local environment, as well as larger-scale spatial factors such as sources of recruits. We assessed the relative importance of the species composition of local neighbourhoods and proximal environmental factors on the composition of invertebrate assemblages. 2. Macroinvertebrate assemblages were sampled at 188 running-water sites in the catchment of the River Rede, north-east England. A total of 176 species were recorded. 3. Environmental data, in the form of 13 biotic and abiotic measurements that described stream physical structure, aquatic vegetation and water characteristics, were recorded for each site. Detrended correspondence analysis was then used to simplify nine of these stream environmental variables to create an index of stream structure. 4. The species composition of the invertebrate assemblages was related to the environmental variables, using an information theoretic approach. The impact of the species composition of neighbouring sites on each site was determined using Moran's I and autoregressive modelling techniques. 5. Species composition was primarily associated with water pH and stream structure. The importance of the species composition of neighbouring sites in determining local species assemblages differed markedly between taxa. The autoregressive component was low for Coleoptera, intermediate for Trichoptera and Plecoptera, and high for Ephemeroptera. 6. We hypothesise that the observed differences in the autoregressive component amongst these orders reflects variation in their dispersal abilities from neighbouring sites. [source] Loglinear Residual Tests of Moran's I Autocorrelation and their Applications to Kentucky Breast Cancer DataGEOGRAPHICAL ANALYSIS, Issue 3 2007Ge Lin This article bridges the permutation test of Moran's I to the residuals of a loglinear model under the asymptotic normality assumption. It provides the versions of Moran's I based on Pearson residuals (IPR) and deviance residuals (IDR) so that they can be used to test for spatial clustering while at the same time account for potential covariates and heterogeneous population sizes. Our simulations showed that both IPR and IDR are effective to account for heterogeneous population sizes. The tests based on IPR and IDR are applied to a set of log-rate models for early-stage and late-stage breast cancer with socioeconomic and access-to-care data in Kentucky. The results showed that socioeconomic and access-to-care variables can sufficiently explain spatial clustering of early-stage breast carcinomas, but these factors cannot explain that for the late stage. For this reason, we used local spatial association terms and located four late-stage breast cancer clusters that could not be explained. The results also confirmed our expectation that a high screening level would be associated with a high incidence rate of early-stage disease, which in turn would reduce late-stage incidence rates. [source] Patterns of density, diversity, and the distribution of migratory strategies in the Russian boreal forest avifaunaJOURNAL OF BIOGEOGRAPHY, Issue 11 2008Russell Greenberg Abstract Aim, Comparisons of the biotas in the Palaearctic and Nearctic have focused on limited portions of the two regions. The purpose of this study was to assess the geographic pattern in the abundance, species richness, and importance of different migration patterns of the boreal forest avifauna of Eurasia from Europe to East Asia as well as their relationship to climate and forest productivity. We further examine data from two widely separated sites in the New World to see how these conform to the patterns found in the Eurasian system. Location, Boreal forest sites in Russia and Canada. Methods, Point counts were conducted in two to four boreal forest habitats at each of 14 sites in the Russian boreal forest from near to the Finnish border to the Far East, as well as at two sites in boreal Canada. We examined the abundance and species richness of all birds, and specific migratory classes, against four gradients (climate, primary productivity, latitude, and longitude). We tested for spatial autocorrelation in both dependent and independent variables using Moran's I to develop spatial correlograms. For each migratory class we used maximum likelihood to fit models, first assuming uncorrelated residuals and then assuming spatially autocorrelated residuals. For models assuming unstructured residuals we again generated correlograms on model residuals to determine whether model fitting removed spatial autocorrelation. Models were compared using Akaike's information criterion, adjusted for small sample size. Results, Overall abundance was highest at the eastern and western extremes of the survey region and lowest at the continent centre, whereas the abundance of tropical and short-distance migrants displayed an east,west gradient, with tropical migrants increasing in abundance in the east (and south), and short-distance migrants in the west. Although overall species richness showed no geographic pattern, richness within migratory classes showed patterns weaker than, but similar to, their abundance patterns described above. Overall abundance was correlated with climate variables that relate to continentality. The abundances of birds within different migration strategies were correlated with a second climatic gradient , increasing precipitation from west to east. Models using descriptors of location generally had greater explanatory value for the abundance and species-richness response variables than did those based on climate data and the normalized difference vegetation index (NDVI). Main conclusions, The distribution patterns for migrant types were related to both climatic and locational variables, and thus the patterns could be explained by either climatic regime or the accessibility of winter habitats, both historically and currently. Non-boreal wintering habitat is more accessible from both the western and eastern ends than from the centre of the boreal forest belt, but the tropics are most accessible from the eastern end of the Palaearctic boreal zone, in terms of distance and the absence of geographical barriers. Based on comparisons with Canadian sites, we recommend that future comparative studies between Palaearctic and Nearctic faunas be focused more on Siberia and the Russian Far East, as well as on central and western Canada. [source] Spatial patterns of tree recruitment in a relict population of Pinus uncinata: forest expansion through stratified diffusionJOURNAL OF BIOGEOGRAPHY, Issue 11 2005J. Julio Camarero Abstract Aim, To infer future changes in the distribution of isolated relict tree populations at the limit of a species' geographical range, a deep understanding of the regeneration niche and the spatial pattern of tree recruitment is needed. Location, A relict Pinus uncinata population located at the south-western limit of distribution of the species in the Iberian System of north-eastern Spain. Methods,Pinus uncinata individuals were mapped within a 50 × 40-m plot, and their size, age and reproductive status were estimated. Data on seed dispersal were obtained from a seed-release experiment. The regeneration niche of the species was assessed based on the associations of seedling density with substrate and understorey cover. The spatial pattern of seedlings was described using point-pattern (Ripley's K) and surface-pattern (correlograms, Moran's I) analyses. Statistical and inverse modelling were used to characterize seedling clustering. Results, Pine seedlings appeared aggregated in 6-m patches. Inverse modelling estimated a longer mean dispersal distance (27 m), which corresponded to the size of a large cluster along the north to north-eastward direction paralleled by an eastward trend of increasing seedling age. The two spatial scales of recruitment were related to two dispersal processes. The small-scale clustering of seedlings was due to local seed dispersal in open areas near the edge of Calluna vulgaris mats: the regeneration niche. The long-range expansion might be caused by less frequent medium-distance dispersal events due to the dominant north-westerly winds. Main conclusions, To understand future range shifts of marginal tree populations, data on seed dispersal, regeneration niche and spatial pattern of recruitment at local scales should be obtained. The monitoring of understorey communities should be a priority in order to predict correctly shifts in tree species range in response to global warming. [source] Heterogeneous genetic structure in a Fagus crenata population in an old-growth beech forest revealed by microsatellite markersMOLECULAR ECOLOGY, Issue 5 2004Y. Asuka Abstract The within-population genetic structure of Fagus crenata in a 4-ha plot (200 × 200 m) of an old-growth beech forest was analysed using microsatellite markers. To assess the genetic structure, Moran's I spatial autocorrelation coefficient was calculated. Correlograms of Moran's I showed significant positive values less than 0.100 for short-distance classes, indicating weak genetic structure. The genetic structure within the population is created by limited seed dispersal, and is probably weakened by overlapping seed shadow, secondary seed dispersal, extensive pollen flow and the thinning process. Genetic structure was detected in a western subplot of 50 × 200 m with immature soils and almost no dwarf bamboos (Sasa spp.), where small and intermediate-sized individuals were distributed in aggregations with high density because of successful regeneration. By contrast, genetic structure was not found in an eastern subplot of the same size with mature soils and Sasa cover, where successful regeneration was prevented, and the density of the small and intermediate-sized individuals was low. Moreover, genetic structure of individuals in a small-size class (diameter at breast height < 12 cm) was more obvious than in a large-size class (diameter at breast height , 12 cm). The apparent genetic structure detected in the 4-ha plot was therefore probably the result of the structure in the western portion of the plot and in small and intermediate-sized individuals that successfully regenerated under the favourable environment. The heterogeneity in genetic structure presumably reflects variation in the density that should be affected by differences in regeneration dynamics associated with heterogeneity in environmental conditions. [source] Isolation by distance, based on microsatellite data, tested with spatial autocorrelation (spaida) and assignment test (spassign)MOLECULAR ECOLOGY RESOURCES, Issue 1 2004Snæbjörn Pálsson Abstract spassign and spaida are two small programs useful to detect isolate by distance of microsatellite loci. The programs are written in C and are available for Linux and Windows system at http://www.hi.is/~snaebj/programs.html. spaida calculates two estimates of spatial autocorrelation, Moran's I and Geary's c, first by assuming the infinite allele model, and second by assuming a stepwise mutational model. spassign calculates the assignment probabilities of an individuals genotype to the location where it was sampled and compares probabilities of assignment to other locations. Genetic distances among regions based on the overall differences in likelihoods are calculated. [source] Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams?OIKOS, Issue 1 2010Jani Heino A topic under intensive study in community ecology and biogeography is the degree to which microscopic, as well as macroscopic organisms, show spatially-structured variation in community characteristics. In general, unicellular microscopic organisms are regarded as ubiquitously distributed and, therefore, without a clear biogeographic signal. This view was summarized 75,years ago by Baas-Becking, who stated "everything is everywhere, but, the environment selects". Within the context of metacommunity theory, this hypothesis is congruent with the species sorting model. By using a broad-scale dataset on stream diatom communities and environmental predictor variables across most of Finland, our main aim was to test this hypothesis. Patterns of spatial autocorrelation were evaluated by Moran's I based correlograms, whereas partial regression analysis and partial redundancy analysis were used to quantify the relative importance of environmental and spatial factors on total species richness and on community composition, respectively. Significant patterns of spatial autocorrelation were found for all environmental variables, which also varied widely. Our main results were clear-cut. In general, pure spatial effects clearly overcame those of environmental effects, with the former explaining much more variation in species richness and community composition. Most likely, missing environmental variables cannot explain the higher predictive power of spatial variables, because we measured key factors that have previously been found to be the most important variables (e.g. pH, conductivity, colour, phosphorus, nitrogen) shaping the structure of diatom communities. Therefore, our results provided only limited support for the Baas-Becking hypothesis and the species sorting perspective of metacommunity theory. [source] Demographic genetics of the American beech (Fagus grandifolia Ehrh.) III.PLANT SPECIES BIOLOGY, Issue 1 2003Genetic substructuring of coastal plain population in Maryland Abstract Spatiotemporal genetic substructurings were investigated in the American beech population of the east-central coastal plain in Maryland. All trees including seedlings, various sizes of juveniles, and mature trees within the study site (10 × 100 m) were mapped, diameters measured, and leaves collected for allozyme analyses. Eleven polymorphic loci in eight enzyme systems were examined: 6Pgdh2, 6Pgdh3, Acp2, Adh1, Adh2, Fum, Got1, Got3, Lap, Pgi, and Pgm2. A total of 1945 trees were analyzed and 595 multilocus genotypes were detected. Six size-classes and 10 spatial blocks were discriminated for spatiotemporal analyses. Parameters for genetic variations (heterozygosity, Simpson's index, Shannon-Weaver's index, and inbreeding coefficient) decreased in larger size-classes. These genetic parameters fluctuated in spatial blocks of 10 m intervals, in which certain alleles were characteristic of specific blocks. The spatial autocorrelation by Moran's I and coancestry revealed the ranges of genetic relatedness to be only 20,30 m. Multilocus genotype analyses showed that higher genetic variations occur in larger size-classes and at gap openings where seed shadows for mother trees are overlapped. The relationships among reproductive trees, seedlings and juveniles suggested that the seed dispersal range of the American beech is normally in the range of 30,40 m. The mechanisms of a remarkably high genetic polymorphism maintained in this once artificially disturbed and grazed forest are discussed as related to conservation biology. [source] Spatial segregation, segregation indices and the geographical perspectivePOPULATION, SPACE AND PLACE (PREVIOUSLY:-INT JOURNAL OF POPULATION GEOGRAPHY), Issue 2 2006Lawrence A. Brown Abstract What could be more inherently geographical than segregation? However, the richness of the spatial variations in segregation is seldom captured by the dominant genre of empirical research. Returning the ,geography' to segregation research, we argue that local areas need to be given considerably more attention, using measures that explicitly reveal the spatial fabric of residential clustering along racial/ethnic lines. We first critique global measures such as the Dissimilarity Index and its spatial counterparts. Attention then turns to local measures such as the Location Quotient and Local Moran's I, applying them to Franklin County, Ohio, the core of Columbus MSA (Metropolitan Statistical Area). Our interpretation of the findings also employs local knowledge concerning neighbourhood characteristics, ongoing urban processes, historical occurrences, and the like. Thus, while local indices based on secondary data expose the terrain of clustering/segregation, follow-up fieldwork and/or secondary data analysis in a mixed-methods framework provides a better understanding of the ground-level reality of clustering/segregation. Tangible evidence of the gain from this approach is provided by our evaluation of conventional frameworks for understanding racial/ethnic aspects of residential patterning , assimilation, stratification and resurgent ethnicity , and in our proposal for a new framework, ,market-led pluralism', which focuses on market makers who represent the supply side of housing. Copyright © 2006 John Wiley & Sons, Ltd. [source] Spatial distribution of communal nests in a colonial breeding bird: benefits without costs?AUSTRAL ECOLOGY, Issue 5 2008URS CHRISTIAN GIEßELMANN Abstract The spatial organization of individuals, or groups of individuals, within a population can provide valuable information about social organization and population dynamics. We analysed the spatial distribution of nests of the sociable weaver (Philetairus socius) on two farms in the Kalahari. Sociable weavers build large communal nests on big savannah trees, forming a pattern of trees with and without nests. We used two spatial statistics, Ripley's K and the pair correlation function, to describe characteristics of the point patterns over a range of distances. (i) At distances of 200 and 300 m, communal nests were clustered. (ii) At distances greater than 1000 m, communal nests were regularly distributed. These findings are independent of the spatial distribution of trees. Furthermore, we used Moran's I to analyse spatial autocorrelation of nest sizes. We expected negative autocorrelation because of competition between nests. But on both farms there was no significant autocorrelation of nest sizes for any distance class. The regular distribution observed at larger distances may indicate competition and/or territoriality among different nests, but the lack of spatial autocorrelation between nest sizes suggests that these interactions may happen between nest clusters rather than between single nests. This was confirmed by significant clustering of nests on small scales. We thus suggest, that colonies of P. socius consist of several nests on adjacent trees forming a cluster of subcolonies. The question why sociable weavers establish subcolonies instead of adding more chambers to the natal nest, could not simply be answered by limitation of nesting space. We suggest a strategy to avoid costs due to increasing colony size. [source] |