Home About us Contact | |||
Monomer Structure (monomer + structure)
Selected AbstractsCD4 is expressed by epidermal Langerhans' cells predominantly as covalent dimersEXPERIMENTAL DERMATOLOGY, Issue 5 2003G. W. Lynch Abstract:, Langerhans' cells (LC) of skin are CD4 expressing, dendritic, antigen-presenting cells, that are essential for activation of primary immune responses and are productively infected by HIV. We have shown previously that lymphocytes and monocytes express CD4 both as monomers and covalently linked homodimers. In those cells the 55-kDa monomer structure predominates. LC in un-fractionated human epidermal cell (EC) suspension also expresses both forms of CD4, but in EC the dimer form is predominant. Because isolation of LC into single cell suspension by trypsin, as is routinely used for LC isolation, degrades CD4, a systematic study for an alternate procedure for LC isolation was performed. Thus it was found that collagenase blend F treatment can efficiently release LC into suspension, under conditions of only minimal degradation of control soluble recombinant CD4 or CEM-T4 or THP-1 cell CD4, or importantly of LC surface CD4. SDS,PAGE immunoblotting of purified LC extracted from EC by collagenase confirmed CD4 structure as predominantly 110-kDa dimers, with only minimal 55-kDa monomers. The suitability of LC prepared thus for functional studies was demonstrated with binding of functional ligand HIV gp120. It remains to be determined, however, why tissue embedded LC express mainly CD4 dimers, but single-celled blood lymphocytes and monocytes mainly monomers. [source] Design and synthesis of multifunctional glycidyl ethers that undergo frontal polymerizationJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2006James V. Crivello Abstract An investigation of the photoactivated cationic ring-opening frontal polymerizations of a series of alkyl glycidyl ethers has been carried out with the aid of a novel technique, optical pyrometry. With this technique, the effects of the monomer structure on the frontal behavior of these monomers have been examined. Upon irradiation with UV light, the photopolymerizations of many alkyl glycidyl ethers display a prolonged induction period at room temperature as the result of the formation of long-lived, relatively stable secondary oxonium ions. The input of only a small amount of thermal activation energy is required to induce the further reaction of these species with a consequent autoaccelerated exothermic ring-opening polymerization. Photoactivated frontal polymerizations have been observed for both mono- and polyfunctional alkyl glycidyl ether monomers. The ability of monomers to exhibit frontal behavior has been found to be related to their ability to stabilize the secondary oxonium ion intermediates through multiple hydrogen-bonding effects to the ether groups present in the molecule. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6435,6448, 2006 [source] Influence of Structure on Polymerization Rates and Ca-Binding of Phosphorus-Containing 1,6-DienesMACROMOLECULAR REACTION ENGINEERING, Issue 5 2007Aylin Ziylan Albayrak Abstract Photo- and thermal-polymerizations of 4-diethoxyphosphoryl-2,4,6-tris(ethoxycarbonyl)-1,6-heptadiene, 4,4-bis(diethoxyphosphoryl)-2,6-bis(t -butoxycarbonyl)-1,6-heptadiene and 4-diethoxyphosphoryl-4-ethoxycarbonyl-2,6-bis(t -butoxycarbonyl)-1,6-heptadiene monomers and their phosphonic and carboxylic acid derivatives were investigated to understand the effect of the cyclic monomer structure on their polymerization reactivity. A strong effect of the substituents at positions 2, 4 and 6 of the monomers on polymerization rate was observed. The polymerizability of the monomers was successfully correlated with the 13C NMR chemical shifts of the vinyl carbons. Conversion values were consistent with the Tg being a measure of the flexibility of a monomer. The monomers containing phosphonic acid groups were soluble in water and ethanol. The acidic nature of the aqueous solutions of these monomers is expected to give them etching properties, important for dental applications. The interaction of the acid monomers with hydroxyapatite was investigated using 13C NMR technique. [source] Structure and heme binding properties of Escherichia coli O157:H7 ChuXPROTEIN SCIENCE, Issue 4 2009Michael D. L. Suits Abstract For many pathogenic microorganisms, iron acquisition from host heme sources stimulates growth, multiplication, ultimately enabling successful survival and colonization. In gram-negative Escherichia coli O157:H7, Shigella dysenteriae and Yersinia enterocolitica the genes encoded within the heme utilization operon enable the effective uptake and utilization of heme as an iron source. While the complement of proteins responsible for heme internalization has been determined in these organisms, the fate of heme once it has reached the cytoplasm has only recently begun to be resolved. Here we report the first crystal structure of ChuX, a member of the conserved heme utilization operon from pathogenic E. coli O157:H7 determined at 2.05 Å resolution. ChuX forms a dimer which remarkably given low sequence homology, displays a very similar fold to the monomer structure of ChuS and HemS, two other heme utilization proteins. Absorption spectral analysis of heme reconstituted ChuX demonstrates that ChuX binds heme in a 1:1 manner implying that each ChuX homodimer has the potential to coordinate two heme molecules in contrast to ChuS and HemS where only one heme molecule is bound. Resonance Raman spectroscopy indicates that the heme of ferric ChuX is composed of a mixture of coordination states: 5-coordinate and high-spin, 6-coordinate and low-spin, and 6-coordinate and high-spin. In contrast, the reduced ferrous form displays mainly a 5-coordinate and high-spin state with a minor contribution from a 6-coordinate and low-spin state. The ,Fe-CO and ,C-O frequencies of ChuX-bound CO fall on the correlation line expected for histidine-coordinated hemoproteins indicating that the fifth axial ligand of the ferrous heme is the imidazole ring of a histidine residue. Based on sequence and structural comparisons, we designed a number of site-directed mutations in ChuX to probe the heme binding sites and dimer interface. Spectral analysis of ChuX and mutants suggests involvement of H65 and H98 in heme coordination as mutations of both residues were required to abolish the formation of the hexacoordination state of heme-bound ChuX. [source] RDC-assisted modeling of symmetric protein homo-oligomersPROTEIN SCIENCE, Issue 5 2008Xu Wang Abstract Protein oligomerization serves an important function in biological processes, yet solving structures of protein oligomers has always been a challenge. For solution NMR, the challenge arises both from the increased size of these systems and, in the case of homo-oligomers, from ambiguities in assignment of intra- as opposed to intersubunit NOEs. In this study, we present a residual dipolar coupling (RDC)-assisted method for constructing models of homo-oligomers with purely rotational symmetry. Utilizing the fact that one of the principal axes of the tensor describing the alignment needed for RDC measurement is always parallel to the oligomer symmetry axis, it is possible to greatly restrict possible models for the oligomer. Here, it is shown that, if the monomer structure is known, all allowed dimer models can be constructed using a grid search algorithm and evaluated based on RDC simulations and the quality of the interface between the subunits. Using the Bacillus subtilis protein YkuJ as an example, it is shown that the evaluation criteria based on just two sets of NH RDCs are very selective and can unambiguously produce a model in good agreement with an existing X-ray structure of YkuJ. [source] Structural implications of a G170R mutation of alanine:glyoxylate aminotransferase that is associated with peroxisome-to-mitochondrion mistargetingACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2010Snezana Djordjevic In a subset of patients with the hereditary kidney-stone disease primary hyperoxaluria type 1 (PH1), the liver-specific enzyme alanine:glyoxylate aminotransferase (AGT) is mistargeted from peroxisomes to mitochondria. This is a consequence of the combined presence of the common P11L polymorphism and a disease-specific G170R mutation. In this paper, the crystal structure of mutant human AGT containing the G170R replacement determined at a resolution of 2.6,Å is reported. The crystal structure of AGT consists of an intimate dimer in which an extended N-terminal segment of 21 amino acids from one subunit wraps as an elongated irregular coil around the outside of the crystallographic symmetry-related subunit. In addition to the N-terminal segment, the monomer structure contains a large domain of 261 amino acids and a small C-terminal domain of 110 amino acids. Comparison of the mutant AGT structure and that of wild-type normal AGT shows that the two structures are almost identical, with a backbone-atom r.m.s. deviation of 0.34,Å. However, evidence of significant local structural changes in the vicinity of the G170R mutation might be linked to the apparent decrease in protein stability. [source] Primary Steps of pH-Dependent Insulin Aggregation Kinetics are Governed by Conformational FlexibilityCHEMBIOCHEM, Issue 11 2009Jürgen Haas Dr. Abstract Insulin aggregation critically depends on pH. The underlying energetic and structural determinants are, however, unknown. Here, we measure the kinetics of the primary aggregation steps of the insulin monomer in vitro and relate it to its conformational flexibility. To assess these primary steps the monomer concentration was monitored by mass spectrometry at various pH values and aggregation products were imaged by atomic force microscopy. Lowering the pH from 3 to 1.6 markedly accelerated the observed aggregation kinetics. The influence of pH on the monomer structure and dynamics in solution was studied by molecular dynamics simulations, with the protonation states of the titrable groups obtained from electrostatic calculations. Reduced flexibility was observed for low pH values, mainly in the C terminus and in the helix of the B chain; these corresponded to an estimated entropy loss of 150 J,mol,1,K,1. The striking correlation between entropy loss and pH value is consistent with the observed kinetic traces. In analogy to the well-known , value analysis, this result allows the extraction of structural information about the rate determining transition state of the primary aggregation steps. In particular, we suggest that the residues in the helix of the B chain are involved in this transition state. [source] High-Speed Living Polymerization of Polar Vinyl Monomers by Self-Healing Silylium CatalystsCHEMISTRY - A EUROPEAN JOURNAL, Issue 34 2010Dr. Yuetao Zhang Abstract This contribution describes the development and demonstration of the ambient-temperature, high-speed living polymerization of polar vinyl monomers (M) with a low silylium catalyst loading (, 0.05,mol,% relative to M). The catalyst is generated in situ by protonation of a trialkylsilyl ketene acetal (RSKA) initiator (I) with a strong Brønsted acid. The living character of the polymerization system has been demonstrated by several key lines of evidence, including the observed linear growth of the chain length as a function of monomer conversion at a given [M]/[I] ratio, near-precise polymer number-average molecular weight (Mn, controlled by the [M]/[I] ratio) with narrow molecular weight distributions (MWD), absence of an induction period and chain-termination reactions (as revealed by kinetics), readily achievable chain extension, and the successful synthesis of well-defined block copolymers. Fundamental steps of activation, initiation, propagation, and catalyst "self-repair" involved in this living polymerization system have been elucidated, chiefly featuring a propagation "catalysis" cycle consisting of a rate-limiting CC bond formation step and fast release of the silylium catalyst to the incoming monomer. Effects of acid activator, catalyst and monomer structure, and reaction temperature on polymerization characteristics have also been examined. Among the three strong acids incorporating a weakly coordinating borate or a chiral disulfonimide anion, the oxonium acid [H(Et2O)2]+[B(C6F5)4], is the most effective activator, which spontaneously delivers the most active R3Si+, reaching a high catalyst turn-over frequency (TOF) of 6.0×103,h,1 for methyl methacrylate polymerization by Me3Si+ or an exceptionally high TOF of 2.4×105,h,1 for n -butyl acrylate polymerization by iBu3Si+, in addition to its high (>90,%) to quantitative efficiencies and a high degree of control over Mn and MWD (1.07,1.12). An intriguing catalyst "self-repair" feature has also been demonstrated for the current living polymerization system. [source] Synthesis and properties of nitrogen-linked poly(2,7-carbazole)s as hole-transport material for organic light emitting diodesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2009Tsuyoshi Michinobu Abstract A novel class of carbazole polymers, nitrogen-linked poly(2,7-carbazole)s, was synthesized by polycondensation between two bifunctional monomers using the palladium-catalyzed amination reaction. The polymers were characterized by 1H NMR, Infrared, Gel permeation chromatography, and MALDI-TOF MS and it was revealed that the combination of the monomer structures is important for producing high molecular weight polymers. Thermal analysis indicated a good thermal stability with high glass transition temperatures, e.g., 138 °C for the higher molecular weight polymer P2. To pursue the application possibilities of these polymers, their optical properties and energy levels were investigated by UV-Vis absorption and fluorescence spectra as well as their electrochemical characteristics. Although the blue light emission was indeed observed for all polymers in solution, the quantum yields were very low and the solid films were not fluorescent. On the other hand, the HOMO levels of the polymers estimated from the onset potentials for the first oxidation in the solid thin films were relatively high in the range of ,5.12 to ,5.20 eV. Therefore, light emitting diodes employing these polymers as a hole-transport layer and iridium(III) complex as a triplet emitter were fabricated. The device of the nitrogen-linked poly(2,7-carbazole) P3 with p,p,-biphenyl spacer, which has a higher HOMO level and a higher molecular weight, showed a much better performance than the device of P2 with m -phenylene spacer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3880,3891, 2009 [source] Study of Laser-Induced Photopolymerizations by Optical PyrometryMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 15 2004Patrick Lin Abstract Summary: Studies of the 355 nm laser induced free radical and cationic photopolymerization reactions of mono- and multifunctional monomers were conducted. These investigations were carried out with the aid of a specially constructed optical pyrometry instrument that provides rapid, reproducible temperature versus time profiles for these fast photopolymerization reactions. Using this technique, the effects of various reaction parameters and monomer structures on the rate and extent of the photopolymerization reactions were examined. Optical pyrometry instrument for the monitoring of laser-induced photopolymerizations. [source] Structure of human salivary ,-amylase crystallized in a C -centered monoclinic space groupACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 2 2006S. Zoë Fisher Human salivary ,-amylase (HSA) is a major secretory protein component of saliva and has important biological functions, including the initial digestion of starch. HSA acts as a monomer and mediates the hydrolysis of ,-1,4-glucosidic linkages in oligosaccharides. To date, all published crystal structures of HSA have been crystallized as monomers in space group P212121. Here, the serendipitous purification, crystallization and ultimate structure determination of a HSA non-crystallographic symmetry (NCS) dimer, while attempting to purify human carbonic anhydrase VI (HCA VI) from saliva using an affinity resin for ,-class carbonic anhydrases, is presented. On further investigation, it was shown that HSA could only be copurified using the affinity resin in the presence of HCA VI which is glycosylated and not the non-glycosylated HCA II. The identification of the HSA crystals was carried out by peptide mapping and mass spectrometry. HSA was shown to have crystallized as an NCS dimer in space group C2, with unit-cell parameters a = 150.9, b = 72.3, c = 91.3,Å, , = 102.8°. The NCS dimer crystal structure is reported to 3.0,Å resolution, with a refined Rcryst of 0.228. The structure is compared with the previously reported P212121 monomer structures and the crystal packing and dimer interface are discussed. [source] |