Monocytic Cells (monocytic + cell)

Distribution by Scientific Domains

Terms modified by Monocytic Cells

  • monocytic cell line

  • Selected Abstracts


    Rat choroid plexuses contain myeloid progenitors capable of differentiation toward macrophage or dendritic cell phenotypes

    GLIA, Issue 3 2006
    Serge Nataf
    Abstract The interface between the blood and the cerebrospinal fluid (CSF) is formed by the choroid plexuses (CPs), which are specialized structures located within the brain ventricles. They are composed of a vascularized stroma surrounded by a tight epithelium that controls molecular and cellular traffic between the blood and the CSF. Cells expressing myeloid markers are present within the choroidal stroma. However, the exact identity, maturation state, and functions of these CP-associated myeloid cells are not fully clarified. We show here that this cell population contains immature myeloid progenitors displaying a high proliferative potential. Thus, in neonate rats and, to a lesser extent, in adult rats, cultured CP stroma cells form large colonies of macrophages, in response to M-CSF or GM-CSF, while, under the same conditions, peripheral blood monocytes do not. In addition, under GM-CSF treatment, free-floating colonies of CD11c+ monocytic cells are generated which, when restimulated with GM-CSF and IL-4, differentiate into OX62+/MHC class II+ dendritic cells. Interestingly, in CP stroma cultures, myeloid cells are found in close association with fibroblastic-like cells expressing the neural stem-cell marker nestin. Similarly, in the developing brain, macrophages and nestin+ fibroblastic cells accumulate in vivo within the choroidal stroma. Taken together, these results suggest that the CP stroma represents a niche for myeloid progenitors and may serve as a reservoir for brain macrophages. © 2006 Wiley-Liss, Inc. [source]


    Changes in chromatin structure and methylation of the human interleukin-1, gene during monopoiesis

    IMMUNOLOGY, Issue 3 2010
    Inga Wessels
    Summary Interleukin-1, (IL-1,) induces the expression of a variety of proteins responsible for acute inflammation and chronic inflammatory diseases. However, the molecular regulation of IL-1, expression in myeloid differentiation has not been elucidated. In this study the chromatin structure of the IL-1, promoter and the impact of methylation on IL-1, expression in monocytic development were examined. The results revealed that the IL-1, promoter was inaccessible in undifferentiated promyeloid HL-60 cells but highly accessible in differentiated monocytic cells which additionally acquired the ability to produce IL-1,. Accessibilities of differentiated cells were comparable to those of primary monocytes. Lipopolysaccharide (LPS) stimulation did not affect promoter accessibility in promyeloid and monocytic HL-60 cells, demonstrating that the chromatin remodelling of the IL-1, promoter depends on differentiation and not on the transcriptional status of the cell. Demethylation via 5-aza-2,-deoxycytodine led to the induction of IL-1, expression in undifferentiated and differentiated cells, which could be increased after LPS stimulation. Our data indicate that the IL-1, promoter is reorganized into an open poised conformation during monopoiesis being a privilege of mature monocytes but not of the entire myeloid lineage. As a second mechanism, IL-1, expression is regulated by methylation acting independently of the developmental stage of myeloid cells. [source]


    Granulocyte-macrophage colony-stimulating factor elicits bone marrow-derived cells that promote efficient colonic mucosal healing

    INFLAMMATORY BOWEL DISEASES, Issue 3 2010
    Eric Bernasconi PhD
    Abstract Background: Granulocyte-macrophage colony-stimulating factor (GM-CSF) therapy is effective in treating some Crohn's disease (CD) patients and protects mice from colitis induced by dextran sulfate sodium (DSS) administration. However, its mechanisms of action remain elusive. We hypothesized that GM-CSF affects intestinal mucosal repair. Methods: DSS colitic mice were treated with daily pegylated GM-CSF or saline and clinical, histological, and inflammatory parameters were kinetically evaluated. Further, the role of bone marrow-derived cells in the impact of GM-CSF therapy on DSS colitis was addressed using cell transfers. Results: GM-CSF therapy reduced clinical signs of colitis and the release of inflammatory mediators. GM-CSF therapy improved mucosal repair, with faster ulcer reepithelialization, accelerated hyperproliferative response of epithelial cells in ulcer-adjacent crypts, and lower colonoscopic ulceration scores in GM-CSF-administered mice relative to untreated mice. We observed that GM-CSF-induced promotion of mucosal repair is timely associated with a reduction in neutrophil numbers and increased accumulation of CD11b+ monocytic cells in colon tissues. Importantly, transfer of splenic GM-CSF-induced CD11b+ myeloid cells into DSS-exposed mice improved colitis, and lethally irradiated GM-CSF receptor-deficient mice reconstituted with wildtype bone marrow cells were protected from DSS-induced colitis upon GM-CSF therapy. Lastly, GM-CSF-induced CD11b+ myeloid cells were shown to promote in vitro wound repair. Conclusions: Our study shows that GM-CSF-dependent stimulation of bone marrow-derived cells during DSS-induced colitis accelerates colonic tissue repair. These data provide a putative mechanism for the observed beneficial effects of GM-CSF therapy in Crohn's disease. (Inflamm Bowel Dis 2010;) [source]


    Proteinase-activated receptor-1 is an anti-inflammatory signal for colitis mediated by a type 2 immune response

    INFLAMMATORY BOWEL DISEASES, Issue 9 2005
    Nicolas Cenac PhD
    Abstract Background: Activation of colonic proteinase activated receptor-1 (PAR1) provokes colonic inflammation and increases mucosal permeability in mice. The mechanism of inflammation is not neurogenic like in the paw of rats but depends on PAR1 -mediated activation monocytic cells. PAR1 activation in the colon increases the release of lymphocyte T helper-1 (TH1) cytokines. Moreover, PAR1 expression is increased in biopsies from patients with inflammatory bowel disease, and its activation during TH1-mediated colitis in mice increases all of the hallmarks of inflammation. Methods: This study aimed to characterize the effects of PAR1 activation in oxazolone-mediated colitis, involving a TH2 cytokine profile. Results: Intracolonic administration of oxazolone increased myeloperoxidase activity, damage score, and interleukin (IL)-4, IL-10, tumor necrosis factor ,, and IL-1, mRNA expression but lowered interferon-, mRNA expression, indicating colonic inflammation of a TH2 profile. The concurrent intracolonic administration of a PAR1 agonist in oxazolone-treated mice inhibited colitis, resulting in a reduction of myeloperoxidase activity, damage score, and inflammatory cytokine mRNA expression. Using PAR1 -deficient mice, we confirmed that the anti-inflammatory effects of PAR1 agonists were mediated by PAR1. Moreover, in PAR1 -deficient mice or in mice treated with a PAR1 antagonist, oxazolone-induced colitis was exacerbated, showing an endogenous modulatory role for PAR1 in this TH2 cytokine profile of colitis. Conclusions: Thus, as opposed to a previously shown proinflammatory role for PAR1 in a TH1 cytokine-mediated colitis, our new data show anti-inflammatory role for PAR1 activation in the setting of TH2 cytokine colitis model. [source]


    Osteoblast-Specific Targeting of Soluble Colony-Stimulating Factor-1 Increases Cortical Bone Thickness in Mice,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2003
    SL Abboud
    Abstract The soluble and membrane-bound forms of CSF-1 are synthesized by osteoblasts and stromal cells in the bone microenvironment. Transgenic mice, generated to selectively express sCSF-1 in bone, showed increased cortical thickness in the femoral diaphysis caused by new bone formation along the endosteal surface. The ability of sCSF-1 to enhance bone cell activity in vivo is potentially relevant for increasing cortical bone in a variety of disorders. Introduction: The soluble form of colony-stimulating factor-1 (sCSF-1) and the membrane-bound form of CSF-1 (mCSF-1) have been shown to support osteoclastogenesis in vitro; however, the effect of each peptide on bone remodeling in vivo is unclear. To determine the effect of sCSF-1, selectively expressed in bone, the skeletal phenotype of transgenic mice harboring the human sCSF-1 cDNA under the control of the osteocalcin promoter was assessed. Methods: At 5 and 14 weeks, mice were analyzed for CSF-1 protein levels, weighed, and X-rayed, and femurs were removed for peripheral quantitative computed tomography, histology, and histomorphometry. Results: High levels of human sCSF-1 were detected in bone extracts and, to a lesser extent, in plasma. Adult transgenic mice showed normal body weight and increased circulating monocytic cells. At 5 weeks, the femoral diaphysis was similar in CSF-1T and wt/wt littermates. However, by 14 weeks, the femoral diaphysis in CSF-1T mice showed increased cortical thickness and bone mineral density. In contrast to the diaphysis, the femoral metaphysis of CSF-1T mice showed normal cancellous bone comparable with wt/wt littermates at each time point. Histological sections demonstrated increased woven bone along the endosteal surface of the diaphysis and intracortical remodeling. Fluorochrome-labeling analysis confirmed endocortical bone formation in CSF-1T, with a 3.1-fold increase in the percentage of double-labeled surfaces and a 3.6-fold increase in the bone formation rate compared with wt/wt mice. Although remodeling resulted in a slightly porous cortex, sCSF-1 preferentially stimulated endocortical bone formation, leading to increased cortical thickness. Conclusions: These findings indicate that sCSF-1 is a key determinant of bone cell activity in the corticoendosteal envelope. [source]


    Ascochlorin suppresses oxLDL-induced MMP-9 expression by inhibiting the MEK/ERK signaling pathway in human THP-1 macrophages

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2007
    Jeong Han Kang
    Abstract The critical initiating event in atherogenesis involves the invasion of monocytes through the endothelial walls of arteries and the transformation of monocytes from macrophages into foam cells. Human THP-1 monocytic cells can be induced to differentiate into macrophages by phorbol myristate acetate (PMA) and can then be converted into foam cells by exposure to oxidized low-density lipoprotein (oxLDL). Also, during a chronic inflammatory response, monocytes/macrophages produce the 92-kDa matrix metalloproteinase-9 (MMP-9) that may contribute to the extravasation, migration, and tissue remolding capacities of the phagocytic cells. Here, we investigate the effect of ascochlorin (ASC), a prenylphenol antiviral compound from the fungus Ascochyta viciae, on oxLDL-induced MMP-9 expression and activity in human THP-1 macrophages. ASC reduced oxLDL-induced MMP-9 expression and activity in a time-dependent and dose-dependent manner. Also, an analysis of MMP-9 activity using pharmacologic inhibitors showed that ASC inhibits MMP-9 activity via the extracellular signal-regulated kinase 1 and kinase 2 pathways. Our results suggest that ASC may be useful as a potent clinical antiatherogenic agent, a topic of considerable interest in the biological chemistry of chemotherapeutic agents. J. Cell. Biochem. 102: 506,514, 2007. © 2007 Wiley-Liss, Inc. [source]


    HIV-1 Tat protein concomitantly down-regulates apical caspase-10 and up-regulates c-FLIP in lymphoid T cells: A potential molecular mechanism to escape TRAIL cytotoxicity

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005
    Davide Gibellini
    In this study, we showed the existence of a positive correlation between the amount of human immunodeficiency virus-type 1 (HIV-1) RNA in HIV-1 seropositive subjects and the plasma levels of TRAIL. Since it has been previously demonstrated that HIV-1 Tat protein up-regulates the expression of TRAIL in monocytic cells whereas tat -expressing lymphoid cells are more resistant to TRAIL cytotoxicity, we next investigated the effect of Tat on the expression/activity of both apical caspase-8 and -10, which play a key role in mediating the initial phases of apoptosis by TRAIL, and c-FLIP. Jurkat lymphoblastoid human T cell lines stably transfected with a plasmid expressing wild-type (HIV-1) tat gene showed normal levels of caspase-8 but significantly decreased levels of caspase-10 at both mRNA and protein levels with respect to Jurkat transfected with the control plasmid or with a mutated (cys22) non-functional tat cDNA. A significant decrease of caspase-10 expression/activity was also observed in transient transfection experiments with plasmid carrying tat cDNA. Moreover, c-FLIPL and c-FLIPS isoforms were up-regulated in tat -expressing cells at both mRNA and protein level in comparison with control cells. Taken together, these results provide a molecular basis to explain the resistance of tat -expressing Jurkat cells to apoptosis induced by TRAIL and, possibly, to other death-inducing ligands. © 2004 Wiley-Liss, Inc. [source]


    Activation of NF-KB signalling and TNF,-expression in THP-1 macrophages by TiAlV- and polyethylene-wear particles

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2005
    Bernd Baumann
    Abstract Wear particles are believed to induce periprosthetic inflammation which contributes to periprosthetic osteolysis. TNF, plays a pivotal role in the pathogenesis of this process. The molecular mechanisms leading to the development of periprosthetic inflammation with upregulated TNF, expression in monocytic cells in response to different wear particles have yet to be defined. In this study we evaluated the effects of polyethylene- and TiAlV-particles on activation of NF-kB signalling pathways and TNF, biosynthesis and release in monocytic cells with respect to periprosthetic osteoclastogenesis. THP-1 monocytic cells were differentiated to macrophage-like cells and exposed to LPS-detoxified polyethylene and prosthesis-derived TiAlV-particles. TNF, release was analyzed in culture supernatant by ELISA. NF-kB activation was examined by electrophoretic mobility shift assay (EMSA), and NF-kB target promoter activities including transactivation of the TNF, promoter were determined by luciferase reporter gene assays. Differentiated THP-1 macrophages were exposed to increasing numbers of particles for 0, 60, 180 and 360 min. Both, polyethylene- and TiAlV-particles induced a significant activation of both NF-kB and TNF, promoters at 180 min. A significant TNF, release was detected after 360 min exposure to polyethylene- and TiAlV-particles in a dose dependent manner. In comparison, LPS induced a much greater activation of NF-kB and TNF, promoters, and TNF, secretion into the supernatant was strongly induced. These results provide evidence that induction of the NF-kB signal transduction pathway in macrophages plays a major role in initiating and mediating the inflammatory response leading to periprosthetic osteolysis. © 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source]


    Plasminogen on the surfaces of fibrin clots prevents adhesion of leukocytes and platelets

    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 4 2010
    V. K. LISHKO
    Summary.,Background and Objectives: Although leukocytes and platelets adhere to fibrin with alacrity in vitro, these cells do not readily accumulate on the surfaces of fibrin clots in vivo. The difference in the capacity of blood cell integrins to adhere to fibrin in vivo and in vitro is striking and implies the existence of a physiologic antiadhesive mechanism. The surfaces of fibrin clots in the circulation are continually exposed to plasma proteins, several of which can bind fibrin and influence cell adhesion. Recently, we have demonstrated that adsorption of soluble fibrinogen on the surface of a fibrin clot results in its deposition as a soft multilayer matrix, which prevents attachment of blood cells. In the present study, we demonstrate that another plasma protein, plasminogen, which is known to accumulate in the superficial layer of fibrin, exerts an antiadhesive effect. Results: After being coated with plasminogen, the surfaces of fibrin clots became essentially non-adhesive for U937 monocytic cells, blood monocytes, and platelets. The data revealed that activation of fibrin-bound plasminogen by the plasminogen-activating system assembled on adherent cells resulted in the generation of plasmin, which decomposed the superficial fibrin layer, resulting in cell detachment under flow. The surfaces generated after the initial cell adhesion remained non-adhesive for subsequent attachment of leukocytes and platelets. Conclusion: We propose that the limited degradation of fibrin by plasmin generated by adherent cells loosens the fibers on the clot surface, producing a mechanically unstable substrate that is unable to support firm integrin-mediated cell adhesion. [source]


    Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells

    MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 8 2008
    Shu-Jing Wu
    Abstract Tocotrienol-rich fraction (TRF) of palm oil has been shown to possess potent antioxidant, anticancer, and cholesterol lowering activities. In this study, our aim was to examine the effects of TRF on LPS-induced inflammatory response through measuring the production of inflammatory mediators, namely nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cytokines (TNF-,, IL-4, and IL-8), cyclooxygenase-1 and -2 (COX-1 and COX-2), and nuclear factor-,B (NF-,B) in human monocytic (THP-1) cells. At concentrations 0.5,5.0 ,g/mL, TRF dose-dependently protected against LPS-induced cell death. At same concentrations, TRF also showed potent anti-inflammatory activity as demonstrated by a dose-dependent inhibition of LPS (1 ,g/mL)-induced release of NO and PGE2, and a significant decrease in the transcription of proinflammatory cytokines. TRF at 1.0 ,g/mL significantly blocked the LPS induction of iNOS and COX-2 expression, but not COX-1. This anti-inflammatory activity was further supported by the inhibition of NF-,B expression. These results conclude that TRF possesses potent anti-inflammatory activity, and its mechanism of action could be through the inhibition of iNOS and COX-2 production, as well as NF-,B expression. [source]


    ORIGINAL ARTICLE: Haplotype-dependent Differential Activation of the Human IL-10 Gene Promoter in Macrophages and Trophoblasts: Implications for Placental IL-10 Deficiency and Pregnancy Complications

    AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 3 2010
    Surendra Sharma
    Citation Sharma S, Stabila J, Pietras L, Singh AR, McGonnigal B, Ernerudh J, Matthiesen L, Padbury JF. Haplotype-dependent differential activation of the human IL-10 gene promoter in macrophages and trophoblasts: Implications for placental IL-10 deficiency and pregnancy complications. Am J Reprod Immunol 2010; 64: 179,187 Problem, Polymorphic changes in the IL-10 gene promoter have been identified that lead to altered IL-10 production. We hypothesized that because of these genotypic changes, the IL-10 promoter might be expressed in a cell type,specific manner and may respond differentially to inflammatory triggers. Method of study, We created reporter gene promoter constructs containing GCC, ACC, and ATA haplotypes using DNA from patients harboring polymorphic changes at ,1082 (G,A), ,819 (C,T), and ,592 (C,A) sites in the IL-10 promoter. These individual luciferase reporter constructs were transiently transfected into either primary term trophoblasts or THP1 monocytic cells. DNA-binding studies were performed to implicate the role of the Sp1 transcription factor in response to differential promoter activity. Results, Our results suggest that the GCC promoter construct was activated in trophoblast cells in response to lipopolysaccharide (LPS), as demonstrated by reporter gene expression, but not in monocytic cells. The ACC construct showed weaker activation in both cell types. Importantly, while the ATA promoter was constitutively activated in both cell types, its expression was selectively repressed in response to LPS, but only in trophoblasts. DNA-nuclear protein binding assays with nuclear extracts from LPS treated or untreated cells suggested a functional relevance for Sp1 binding differences at the ,592 position. Conclusions, These results demonstrate cell type,specific effects of the genotypic changes in the IL-10 gene promoter. These responses may be further modulated by bacterial infections or other inflammatory conditions to suppress IL-10 production in human trophoblasts. [source]


    In vitro spontaneous osteoclastogenesis of human peripheral blood mononuclear cells is not crucially dependent on T lymphocytes,

    ARTHRITIS & RHEUMATISM, Issue 4 2009
    Bernard Vandooren
    Objective In vitro spontaneous osteoclastogenesis from peripheral blood mononuclear cells (PBMCs) is increased in diseases with excessive bone loss. The purpose of this study was to reassess the role of T lymphocytes in this process. Methods Fresh or cryopreserved PBMCs obtained from healthy subjects and from patients with rheumatoid arthritis, psoriatic arthritis, and non-psoriatic spondylarthritis were cultured at high density and stained for tartrate-resistant acid phosphatase (TRAP). Resorption of mineralized matrix was assessed by a dentin disc assay. CD14+ monocytes and CD3+ T cells were selected using magnetically labeled antibodies. Results Numerous multinucleated, TRAP+, dentin-resorbing osteoclasts developed spontaneously from fresh PBMCs from healthy individuals. This process was abrogated by T cell depletion and was restored by exogenous macrophage colony-stimulating factor (M-CSF) and RANKL, indicating the important role of T cells in spontaneous osteoclastogenesis in vitro. Using physiologic freezing and thawing as a model for the activation of PBMCs, spontaneous osteoclastogenesis was significantly increased in cryopreserved versus fresh cells. Under these conditions, spontaneous osteoclastogenesis was not dependent on T lymphocytes, since it was not influenced by T cell depletion and persisted in purified CD14+ cell cultures supplemented with M-CSF and RANKL. In contrast to studies with fresh PBMCs, spontaneous osteoclastogenesis under these conditions did not appear to be clearly different between healthy subjects and patients with arthritis. Conclusion Spontaneous osteoclastogenesis in vitro is dependent on T lymphocytes or on the direct activation of monocytic cells, depending on the test conditions. This variability warrants better validation of the relevance of this functional test for in vivo osteoclastogenesis. [source]