Monocyte Chemotactic Protein (monocyte + chemotactic_protein)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


The p38 mitogen-activated protein kinase regulates interleukin-1,-induced IL-8 expression via an effect on the IL-8 promoter in intestinal epithelial cells

IMMUNOLOGY, Issue 4 2003
Kuljit Parhar
Summary Several lines of evidence implicate the p38 mitogen-activated protein kinase (p38 MAPK) in the proinflammatory response to bacterial agents and cytokines. Equally, the transcription factor, nuclear factor (NF)-,B, is recognized to be a critical determinant of the inflammatory response in intestinal epithelial cells (IECs). However, the precise inter-relationship between the activation of p38 MAPK and activation of the transcription factor NF-,B in the intestinal epithelial cell (IEC) system, remains unknown. Here we show that interleukin (IL)-1, activates all three MAPKs in Caco-2 cells. The production of IL-8 and monocyte chemotactic protein 1 (MCP-1) was attenuated by 50% when these cells were preincubated with the p38 MAPK inhibitor, SB 203580. Further investigation of the NF-,B signalling system revealed that the inhibitory effect was independent of the phosphorylation and degradation of I,B,, the binding partner of NF-,B. This effect was also independent of the DNA binding of the p65 Rel A subunit, as well as transactivation, determined by an NF-,B luciferase construct, using both SB 203580 and dominant,negative p38 MAPK. Evaluation of IL-8 and MCP-1 RNA messages by reverse transcription,polymerase chain reaction (RT,PCR) revealed that the inhibitory effect of SB 203580 was associated with a reduction in this parameter. Using an IL-8,luciferase promoter construct, an effect of p38 upon its activation by both pharmacological and dominant,negative p38 construct co-transfection was demonstrated. It is concluded that p38 MAPK influences the expression of chemokines in intestinal epithelial cells, through an effect upon the activation of the chemokine promoter, and does not directly involve the activation of the transcription factor NF-,B. [source]


Mechanical strain increases cytokine and chemokine production in bronchial fibroblasts from asthmatic patients

ALLERGY, Issue 1 2009
F. Le Bellego
Background:, Mechanical strain and cytokine stimulation are two important mechanisms leading to airway remodeling in asthma. The effect of mechanical strain on cytokine secretion in airway fibroblasts is not known. The aim of this study was to determine whether bronchial and nasal fibroblasts differentially alter cytokine secretion in response to mechanical strain. Methods:, We measured secretion of the pro-fibrotic cytokine, interleukin-6 (IL-6), and the pro-inflammatory cytokines, IL-8 and monocyte chemotactic protein 1, before and after mechanical strain in bronchial fibroblasts obtained from asthmatic patients [asthmatic bronchial fibroblasts (BAF)] and normal volunteers [normal bronchial fibroblasts (BNF)], and in nasal fibroblasts (NF) obtained from nasal polyps. Cells were grown on flexible membranes and a mechanical strain of 30% amplitude, 1 Hz frequency was applied for 3, 6 and 24 h. Control cells were unstrained. IL-6, IL-8 and monocyte chemotactic protein 1 was measured after 24 h strain using enzyme-linked immunoassay; mRNA was measured by real time polymerase chain reaction. We also measured mRNA for versican, a matrix proteoglycan, known to be upregulated in the asthmatic airway wall. Results:, In unstrained conditions, no differences in cytokine secretion were observed. After 24 h strain, BAF secreted more IL-6 than BNF. Mechanical strain increased IL-8 mRNA in BAF, BNF and NF; and IL-6 and versican mRNA, in BAF, only. Conclusions:, Cytokine responses to mechanical strain varied in different airway fibroblast populations, and depended on the site of origin, and the underlying inflammatory state. Strain resulted in IL-6 upregulation and increased message for extracellular matrix protein in bronchial fibroblasts from asthmatic patients only, and may reflect these patients' propensity for airway remodeling. [source]


Serum concentration of macrophage-derived chemokine may be a useful inflammatory marker for assessing severity of atopic dermatitis in infants and young children

PEDIATRIC ALLERGY AND IMMUNOLOGY, Issue 4 2003
Ting Fan Leung
Chemokines are responsible for the trafficking of leukocytes to sites of inflammation. Serum chemokine levels were previously shown to be increased in adult patients with atopic dermatitis (AD). We tested whether serum concentrations of chemokines, including macrophage-derived chemokine (MDC), thymus and activation-regulated chemokine (TARC), eotaxin (EOX), interferon gamma inducible protein 10 (IP-10) and monocyte chemotactic protein 1 (MCP-1), are useful inflammatory markers for assessing AD severity in infants and young children. To investigate this, we assessed the severity of AD clinically using the SCORing Atopic Dermatitis (SCORAD) index system. Serum chemokine concentrations were determined by sandwich enzyme immunoassay. Twenty AD patients with a median age of 2.1 years [interquartile range (IQR): 0.6,4.2] were recruited. Their SCORAD score was 23.5 (12.5,33.5). Serum concentrations of MDC, TARC, EOX, IP-10 and MCP-1 were 2551 (1978,3935), 1469 (1125,3070), 68 (57,85), 126 (101,226) and 518 (419,614) pg/ml, respectively. Serum MDC levels correlated with SCORAD (r =,0.608, p = 0.004) and its extent (r =,0.629, p = 0.003) and intensity (r =,0.557, p = 0.011) components. Serum TARC concentration showed weaker correlation with extent (r =,0.474, p = 0.035) and intensity (r =,0.465, p = 0.039) of skin involvement but not SCORAD. The median serum levels of MDC (3131 vs. 2394 pg/ml; p = 0.031) and EOX (80 vs. 61 pg/ml; p = 0.046) were also higher in children with moderate as compared with mild AD. The other chemokines did not correlate with AD severity. In conclusion, our results suggest that serum MDC concentration may be a useful inflammatory marker for assessing AD severity in infants and young children. [source]


Risk Factors and Mechanisms of Preterm Delivery in Malawi

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 2 2004
Elizabeth T. Abrams
Problem:, We examined risk factors and mechanisms of preterm delivery (PTD) in malaria-exposed pregnant women in Blantyre, Malawi. Method of study:, The human immunodeficiency virus (HIV), malaria, syphilis, and anemia were assessed in a cross-sectional study of 572 pregnant women. In a nested case,control study, chorioamnionitis (CAM) was examined; tumor necrosis factor (TNF)- ,, interleukin (IL)-6, IL-8, macrophage inflammatory protein (MIP)-1,, monocyte chemotactic protein (MCP)-1, transforming growth factor (TGF)- ,, cortisol, and corticotropin-releasing hormone were measured in placental, maternal and/or cord blood. Results:, HIV, infrequent antenatal clinic attendance, low-maternal weight, no intermittent preventive malaria therapy (IPT), and CAM were associated with PTD, while malaria was not. Of the 18 compartmental cytokine measurements, elevations in placental and/or cord IL-6 and IL-8 were associated with both CAM and PTD. In contrast, there was no overlap between the cytokines affected by malaria and those associated with PTD. Conclusions:, The HIV and CAM were the major infections associated with PTD in this study. CAM, but not malaria, causes PTD via its effect on proinflammatory cytokines. [source]


Targeted tumor necrosis factor receptor I preligand assembly domain improves skin lesions in MRL/lpr mice

ARTHRITIS & RHEUMATISM, Issue 8 2010
Guo-Min Deng
Objective Skin disease is the second most common manifestation in patients with systemic lupus erythematosus (SLE). Tumor necrosis factor receptor (TNFR) preligand assembly domain (PLAD) has been found to block the effect of TNF,, and TNFRI PLAD (p60 PLAD) inhibits inflammatory arthritis. This study was undertaken to investigate whether TNFR PLAD limits inflammatory skin injury in a mouse model of SLE. Methods Female MRL/lpr mice received p60 PLAD (100 ,g/mouse intraperitoneally), p80 PLAD (100 ,g/mouse intraperitoneally), or phosphate buffered saline (100 ,l/mouse intraperitoneally) 3 times a week for 26 weeks, starting at age 6 weeks. Results Immunohistochemistry studies demonstrated that TNFRI but not TNFRII was dominantly expressed in skin lesions in MRL/lpr mice. We found that TNFRI PLAD (p60 PLAD) but not TNFRII PLAD (p80 PLAD) protein significantly inhibited skin injury in the MRL/lpr mouse model of lupus. NF-,B, monocyte chemotactic protein 1, and inducible nitric oxide synthase expression in skin lesions were significantly inhibited by p60 PLAD. Lupus serum,induced monocyte differentiation into dendritic cells was reduced by p60 PLAD, but p60 PLAD did not reduce IgG deposition in the skin or improve the progression of kidney damage in MRL/lpr mice. Conclusion Our results indicate that TNFRI is involved in the expression of skin injury in MRL/lpr mice with lupus and that p60 PLAD or similar biologics may be of clinical value if applied locally. [source]


META060 inhibits osteoclastogenesis and matrix metalloproteinases in vitro and reduces bone and cartilage degradation in a mouse model of rheumatoid arthritis

ARTHRITIS & RHEUMATISM, Issue 6 2010
Veera Reddy Konda
Objective The multikinase inhibitor META060 has been shown to inhibit NF-,B activation and expression of markers of inflammation. This study was undertaken to investigate the effect of META060 on biomarkers associated with bone and cartilage degradation in vitro and its antiinflammatory efficacy in vivo in both acute and chronic inflammation models. Methods Glycogen synthase kinase 3, (GSK3,),dependent ,-catenin phosphorylation was evaluated in RAW 264.7 macrophages to assess kinase inhibition. The inhibition of osteoclastogenesis and tartrate-resistant acid phosphatase (TRAP) activity was evaluated in RANKL-treated RAW 264.7 cells. The inhibition of interleukin-1, (IL-1,),mediated markers of inflammation was analyzed in human rheumatoid arthritis synovial fibroblasts (RASFs). Mice with carrageenan-induced acute inflammation and collagen-induced arthritis (CIA) were used to assess efficacy. Results META060 inhibited the activity of kinases (spleen tyrosine kinase [Syk], Bruton's tyrosine kinase [Btk], phosphatidylinositol 3-kinase [PI 3-kinase], and GSK3) associated with RA and inhibited ,-catenin phosphorylation. META060 inhibited osteoclastogenesis, as indicated by decreased transformation of RAW 264.7 cells to osteoclasts and reduced TRAP activity, and inhibited IL-1,,activated prostaglandin E2, matrix metalloproteinase 3, IL-6, IL-8, and monocyte chemotactic protein 1 in RASFs. In mice with acute inflammation, oral administration of META060 reduced paw swelling similar to the effect of aspirin. In mice with CIA, META060 significantly reduced the arthritis index and decreased bone, joint, and cartilage degradation. Serum IL-6 concentrations in these mice were inhibited in a dose-dependent manner. Conclusion Our findings indicate that META060 reduces swelling in a model of acute inflammation and inhibits bone and cartilage destruction in a model of chronic inflammation. Its efficacy is associated with the inhibition of multiple protein kinases, including Syk, Btk, PI 3-kinase, and GSK3. These results warrant further clinical testing of META060 for its therapeutic potential in the treatment of inflammatory diseases. [source]


Endogenous estrogen regulation of inflammatory arthritis and cytokine expression in male mice, predominantly via estrogen receptor ,

ARTHRITIS & RHEUMATISM, Issue 4 2010
Y. H. Yang
Objective A number of experimental observations have associated elevated estrogen levels with amelioration of inflammation. The involvement of estrogen and estrogen receptor (ER) isotypes in the regulation of inflammation in males is not well understood. In this study, we used specific ER, and ER, agonists in male mice deficient in estrogen because of a deletion of aromatase (aromatase-knockout [ArKO] mice) to investigate ER isotype utilization in estrogen regulation of inflammation. Methods Lipopolysaccharide (LPS)-induced cytokine expression and antigen-induced arthritis (AIA) were investigated in male ArKO and WT littermate mice, as well as in response to selective agonists of ER, (16,-LE2) and ER, (8,-VE2). The therapeutic effect of selective ER agonists was also examined in mice with collagen-induced arthritis (CIA). Results Estrogen deficiency in ArKO mice was associated with significant increases in LPS-induced serum interleukin-6 (IL-6), tumor necrosis factor, monocyte chemotactic protein 1, and interferon-, levels, which were significantly abrogated by administration of 16,-LE2, but not 8,-VE2. In contrast, both 16,-LE2 and 8,-VE2 significantly increased LPS-induced IL-10 levels. Estrogen deficiency was also associated with significant exacerbation of AIA and antigen-specific T cell proliferation, which was reversed by administration of either 16,-LE2 or 8,-VE2. ArKO mice showed increased antigen-specific T cell proliferation in response to immunization with type II collagen (CII). Administration of 16,-LE2, but not 8,-VE2, significantly reduced the severity of CIA, which was associated with inhibition of anti-CII,specific IgG. Conclusion These data indicate that endogenous estrogen plays an essential inhibitory role in inflammation in male mice and that ER, is the dominant receptor that mediates these effects. [source]


Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis

ARTHRITIS & RHEUMATISM, Issue 2 2010
Heidi Kokkonen
Objective To identify whether cytokines, cytokine-related factors, and chemokines are up-regulated prior to the development of rheumatoid arthritis (RA). Methods A nested case,control study was performed in 86 individuals who had donated blood samples before experiencing any symptoms of disease (pre-patients) and 256 matched control subjects (1:3 ratio). In 69 of the pre-patients, blood samples were also obtained at the time of the diagnosis of RA. The plasma levels of 30 cytokines, related factors, and chemokines were measured using a multiplex system. Results The levels of several of the cytokines, cytokine receptors, and chemokines were significantly increased in individuals before disease onset compared with the levels in control subjects; i.e., those representing signs of general immune activation (interleukin-1, [IL-1,], IL-2, IL-6, IL-1 receptor antagonist, and tumor necrosis factor), activation of Th1 cells (interferon-,, IL-12), Th2 cells (IL-4, eotaxin), Treg cells (IL-10), bone marrow,derived factors (IL-7, granulocyte,macrophage colony-stimulating factor, and granulocyte colony-stimulating factor), as well as chemokines (monocyte chemotactic protein 1 and macrophage inflammatory protein 1,). The levels were particularly increased in anti,cyclic citrullinated peptide antibody, and rheumatoid factor,positive individuals, and the concentration of most of these increased further after disease onset. The concentration of IL-17 in individuals before disease onset was significantly higher than that in patients after disease onset. Individuals in whom RA subsequently developed were discriminated from control subjects mainly by the presence of Th1 cells, Th2 cells, and Treg cell,related cytokines, while chemokines, stromal cell,derived cytokines, and angiogenic-related markers separated patients after the development of RA from individuals before the onset of RA. Conclusion Individuals in whom RA later developed had significantly increased levels of several cytokines, cytokine-related factors, and chemokines representing the adaptive immune system (Th1, Th2, and Treg cell,related factors); after disease onset, the involvement and activation of the immune system was more general and widespread. [source]


Interleukin-6 and type I interferon,regulated genes and chemokines mark disease activity in dermatomyositis

ARTHRITIS & RHEUMATISM, Issue 11 2009
Hatice Bilgic
Objective Up-regulation of whole blood type I interferon (IFN),driven transcripts and chemokines has been described in a number of autoimmune diseases. An IFN gene expression "signature" is a candidate biomarker in patients with dermatomyositis (DM). This study was performed to evaluate the capacity of IFN-dependent peripheral blood gene and chemokine signatures and levels of proinflammatory cytokines to serve as biomarkers for disease activity in adult and juvenile DM. Methods Peripheral blood samples and clinical data were obtained from 56 patients with adult or juvenile DM. The type I IFN gene signature in the whole blood of patients with DM was defined by determining the expression levels of 3 IFN-regulated genes (IFIT1, G1P2, and IRF7) using quantitative real-time reverse transcription,polymerase chain reaction. Multiplexed immunoassays were used to quantify the serum levels of 4 type I IFN,regulated chemokines (IFN-inducible T cell , chemoattractant, IFN,-inducible 10-kd protein, monocyte chemotactic protein 1 [MCP-1], and MCP-2) and the serum levels of other proinflammatory cytokines, including interleukin-6 (IL-6). Results DM disease activity correlated significantly with the type I IFN gene signature (r = 0.41, P = 0.007) and with the type I IFN chemokine signature (r = 0.61, P < 0.0001). Furthermore, the serum levels of IL-6 were significantly correlated with disease activity (r = 0.45, P = 0.001). In addition, correlations between the serum levels of IL-6 and both the type I IFN gene signature (r = 0.47, P < 0.01) and the type I IFN chemokine signature (r = 0.71, P < 0.0001) were detected in patients with DM. Conclusion These results suggest that serum IL-6 production and the type I IFN gene signature are candidate biomarkers for disease activity in adult and juvenile DM. Coregulation of the expression of IFN-driven chemokines and IL-6 suggests a novel pathogenic linkage in DM. [source]


Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: A validation study

ARTHRITIS & RHEUMATISM, Issue 10 2009
Jason W. Bauer
Objective Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by unpredictable flares of disease activity and irreversible damage to multiple organ systems. An earlier study showed that SLE patients carrying an interferon (IFN) gene expression signature in blood have elevated serum levels of IFN-regulated chemokines. These chemokines were associated with more-severe and active disease and showed promise as SLE disease activity biomarkers. This study was designed to validate IFN-regulated chemokines as biomarkers of SLE disease activity in 267 SLE patients followed up longitudinally. Methods To validate the potential utility of serum chemokine levels as biomarkers of disease activity, we measured serum levels of CXCL10 (IFN,-inducible 10-kd protein), CCL2 (monocyte chemotactic protein 1), and CCL19 (macrophage inflammatory protein 3,) in an independent cohort of 267 SLE patients followed up longitudinally over 1 year (1,166 total clinic visits). Results Serum chemokine levels correlated with lupus activity at the current visit (P = 2 × 10,10), rising at the time of SLE flare (P = 2 × 10,3) and decreasing as disease remitted (P = 1 × 10,3); they also performed better than the currently available laboratory tests. Chemokine levels measured at a single baseline visit in patients with a Systemic Lupus Erythematosus Disease Activity Index of ,4 were predictive of lupus flare over the ensuing year (P = 1 × 10,4). Conclusion Monitoring serum chemokine levels in SLE may improve the assessment of current disease activity, the prediction of future disease flares, and the overall clinical decision-making. [source]


Amelioration of alphavirus-induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins

ARTHRITIS & RHEUMATISM, Issue 8 2009
Nestor E. Rulli
Objective Alphaviruses such as chikungunya virus, Sindbis virus, o'nyong-nyong virus, Mayaro virus, and Ross River virus (RRV), are commonly associated with arthralgias and overt arthritides worldwide. Understanding the processes by which arthritogenic viruses cause disease is a prerequisite in the quest for better treatments. In this regard, we have recently established that monocyte/macrophages are mediators of alphavirus-induced arthritis in mice. We hypothesized that chemokines associated with monocyte/macrophage recruitment may play an important role in disease. The aim of the present investigations was to determine whether bindarit, an inhibitor of monocyte chemotactic protein (MCP) synthesis, could ameliorate alphavirus-induced rheumatic disease in mice. Methods Using our recently developed mouse model of RRV-induced arthritis, which has many characteristics of RRV disease (RRVD) in humans, the effects of bindarit treatment on RRVD in mice were determined via histologic analyses, immunohistochemistry, flow cytometry, real-time polymerase chain reaction analysis, enzyme-linked immunosorbent assay, and electrophoretic mobility shift assay. Results Bindarit-treated RRV-infected mice developed mild disease and had substantially reduced tissue destruction and inflammatory cell recruitment as compared with untreated RRV-infected mice. The virus load in the tissues was not affected by bindarit treatment. Bindarit exhibited its activity by down-regulating MCPs, which in turn led to inhibition of cell infiltration and lower production of NF-,B and tumor necrosis factor ,, which are involved in mediating tissue damage. Conclusion Our data support the use of inhibitors of MCP production in the treatment of arthritogenic alphavirus syndromes and suggest that bindarit may be useful in treating RRVD and other alphavirus-induced arthritides in humans. [source]


Induction of CCR2-dependent macrophage accumulation by oxidized phospholipids in the air-pouch model of inflammation

ARTHRITIS & RHEUMATISM, Issue 5 2009
Alexandra Kadl
Objective Macrophages are key players in the pathogenesis of rheumatoid synovitis as well as in atherosclerosis. To determine whether atherogenic oxidized phospholipids potentially contribute to synovial inflammation and subsequent monocyte/macrophage recruitment, we examined the effects of oxidized 1- palmitoyl-2-arachidonoyl- sn -3-glycero-phosphorylcholine (OxPAPC) on chemokine expression and leukocyte recruitment in a facsimile synovium in vivo using the murine air-pouch model. Methods Air pouches were raised by 2 injections of sterile air, and inflammation was induced by injecting either lipopolysaccharide (LPS) or OxPAPC into the pouch lumen. Inflammation was assessed by analysis of inflammatory gene expression using reverse transcription,polymerase chain reaction or immunohistochemical analysis, and leukocytes were quantified in the lavage fluid and in the pouch wall after staining with Giemsa or after enzymatic digestion followed by fluorescence-activated cell sorter analysis. Results Application of OxPAPC resulted in selective recruitment of monocyte/macrophages into the air-pouch wall, but not in the lumen. In contrast, LPS induced both monocyte and neutrophil accumulation in the pouch lumen as well as in the wall. LPS, but not OxPAPC, induced the expression of adhesion molecules E-selectin, P-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1. OxPAPC increased the expression of the CCR2 ligands monocyte chemotactic protein 1 (MCP-1), MCP-3, and MCP-5, as well as RANTES and growth-related oncogene , (GRO,), while it down-regulated the expression of CCR2 on macrophages. Moreover, oxidized phospholipid,induced macrophage accumulation was abrogated in CCR2,/, mice. Conclusion These data demonstrate that oxidized phospholipids trigger a type of inflammatory response that leads to selective macrophage accumulation in vivo, a process relevant for the pathogenesis of chronic inflammatory rheumatic diseases. [source]


Induction of triggering receptor expressed on myeloid cells 1 in murine resident peritoneal macrophages by monosodium urate monohydrate crystals

ARTHRITIS & RHEUMATISM, Issue 2 2006
Yousuke Murakami
Objective Triggering receptor expressed on myeloid cells 1 (TREM-1) is a cell surface molecule that was recently identified on monocytes and neutrophils. TREM-1 has been implicated in the early inflammatory responses induced by microbes, but its pathophysiologic role in nonmicrobial inflammation remains unknown. In the present study, we investigated the role of TREM-1 in acute inflammation induced by monosodium urate monohydrate (MSU) crystals. Induction of TREM-1 expression by MSU crystal,stimulated murine resident peritoneal macrophages and infiltrating leukocytes in a murine air-pouch model of crystal-induced acute inflammation was determined. The biologic role of TREM-1 in crystal-induced cytokine production by resident peritoneal macrophages was also investigated. Methods TREM-1 expression by resident peritoneal macrophages and infiltrating leukocytes in a murine air-pouch model was determined by quantitative real-time polymerase chain reaction, Western blot analysis, and flow cytometry. Cytokine production by resident peritoneal macrophages after incubation with MSU crystals in the presence or absence of an anti,TREM-1 agonist antibody was determined by enzyme-linked immunosorbent assay. Results TREM-1 expression by resident peritoneal macrophages was significantly induced after stimulation with the crystals. Maximum expression of TREM-1 transcripts and protein occurred at 1 and 4 hours after exposure to the crystals, respectively. Costimulation of resident peritoneal macrophages with MSU crystals and an anti,TREM-1 agonist antibody synergistically increased the production of both interleukin-1, and monocyte chemotactic protein 1 compared with stimulation with the crystals alone. MSU crystals also induced TREM-1 expression in infiltrating leukocytes in a murine air-pouch model of crystal-induced acute inflammation. Conclusion These findings suggest that rapid induction of TREM-1 expression on resident peritoneal macrophages and neutrophils by MSU crystals may contribute to the development of acute gout through enhancement of inflammatory responses. [source]


Chemokine responses in schistosomal antigen-elicited granuloma formation,

PARASITE IMMUNOLOGY, Issue 6 2002
Bo-Chin Chiu
Summary Host immune systems have evolved specialized responses to multicellular parasites. This is well represented by the type 2 granulomatous response to Schistosoma mansoni egg antigens, which is an eosinophil-rich inflammatory response mediated by Th2-associated cytokines. Using Ag-bead models of pulmonary granuloma formation in mice, we defined characteristic chemokine (CK) profiles in the granulomatous lungs. Our findings point to a role for C-C chemokine receptor-2 (CCR2) and CCR3 agonists such as monocyte chemotactic proteins (MCPs) 1/CCL2, 3/CCL7 and 5/CCL12 as important participants that are subject to regulation by Th2 cytokines interleukin (IL)-4 and IL-13. CCR4 and CCR8 agonists are also likely contributors. Analysis of CK receptor knockout mice revealed that CCR2 ligands (e.g. MCP-1 and 5) promoted early phase granuloma macrophage accumulation, whereas anti-MCP-3 (CCL7) antibody treatment abrogated eosinophil recruitment. CCR8 knockout mice also demonstrated impaired eosinophil recruitment but this appeared to be related to impaired Th2 cell function. Transcript analysis of CD4+ T cells generated during schistosome granuloma formation failed to show biased CCR8 expression but, having a more limited receptor repertoire, these cells were likely more dependent on CCR8 ligands. Together, these studies indicate an intricate involvement of chemokines in various stages and aspects of schistosomal egg Ag-elicited granuloma formation. [source]


Stimulation of Uterine Cell Cytokine Production By Ovarian Hormones

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 1 2000
J.A. DELOIA
PROBLEM: Although leukocytes do not possess significant numbers of ovarian steroid hormone receptors, their numbers in the endometrium vary consistently, relative to the menstrual cycle. The possibility that cell types within the endometrium express leukocyte-attracting genes in response to ovarian hormones was investigated. METHOD OF STUDY: Endometrial biopsies were collected 10 days post-leutinizing hormone surge; the cell types were separated and cultured individually for 5 days in the presence of increasing amounts of estrogen or progesterone. Following culture, RNA was collected from cells and reverse-transcription-polymerase chain reaction was used to determine relative levels of gene expression of monocyte chemotactic proteins (MCP)-1, -2, and -3, and interleukin (IL)-12p35 and p40. RESULTS: Although both endometrial stroma and glands were able to make MCP mRNA, steady-state levels of gene expression did not vary significantly relative to hormone treatment. The same was found for the p35 molecule of the IL-12 gene; however, differences were observed for the p40 subunit. CONCLUSIONS: Within the human endometrium, chemokines other than MCP and IL-12 are most likely responsible for cycle-related leukocyte recruitment. [source]


Amelioration of alphavirus-induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins

ARTHRITIS & RHEUMATISM, Issue 8 2009
Nestor E. Rulli
Objective Alphaviruses such as chikungunya virus, Sindbis virus, o'nyong-nyong virus, Mayaro virus, and Ross River virus (RRV), are commonly associated with arthralgias and overt arthritides worldwide. Understanding the processes by which arthritogenic viruses cause disease is a prerequisite in the quest for better treatments. In this regard, we have recently established that monocyte/macrophages are mediators of alphavirus-induced arthritis in mice. We hypothesized that chemokines associated with monocyte/macrophage recruitment may play an important role in disease. The aim of the present investigations was to determine whether bindarit, an inhibitor of monocyte chemotactic protein (MCP) synthesis, could ameliorate alphavirus-induced rheumatic disease in mice. Methods Using our recently developed mouse model of RRV-induced arthritis, which has many characteristics of RRV disease (RRVD) in humans, the effects of bindarit treatment on RRVD in mice were determined via histologic analyses, immunohistochemistry, flow cytometry, real-time polymerase chain reaction analysis, enzyme-linked immunosorbent assay, and electrophoretic mobility shift assay. Results Bindarit-treated RRV-infected mice developed mild disease and had substantially reduced tissue destruction and inflammatory cell recruitment as compared with untreated RRV-infected mice. The virus load in the tissues was not affected by bindarit treatment. Bindarit exhibited its activity by down-regulating MCPs, which in turn led to inhibition of cell infiltration and lower production of NF-,B and tumor necrosis factor ,, which are involved in mediating tissue damage. Conclusion Our data support the use of inhibitors of MCP production in the treatment of arthritogenic alphavirus syndromes and suggest that bindarit may be useful in treating RRVD and other alphavirus-induced arthritides in humans. [source]