Monoclinic Symmetry (monoclinic + symmetry)

Distribution by Scientific Domains


Selected Abstracts


On the tetragonality of the room-temperature ferroelectric phase of barium titanate, BaTiO3

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3 2009
Dean S. Keeble
The room-temperature phase of the important ferroelectric material barium titanate, BaTiO3, was re-investigated by single-crystal X-ray diffraction on a sample grown by the top-seeded solution growth method, with the intention of demonstrating once again that the structure has tetragonal symmetry consistent with the space-group assignment P4mm and thus resolving recent controversy in the scientific community and literature [Yoshimura, Kojima, Tokunaga, Tozaki & Koganezawa (2006). Phys. Lett. A, 353, 250,254; Yoshimura, Morioka, Kojima, Tokunaga, Koganezawa & Tozaki (2007). Phys. Lett. A, 367, 394,401]. To this end, the X-ray diffraction pattern of a small (341,µm3) sample of top-seeded solution-grown BaTiO3 was measured using an Oxford Diffraction Gemini CCD diffractometer employing Mo,K, radiation and an extended 120,mm sample-to-detector distance. More than 104 individual diffraction maxima observed out to a maximum resolution of 0.4,Å were indexed on two tetragonal lattices. These were identical to within the standard deviations on the lattice parameters and were related to each other by a single rotation of 119.7° about the [11] direction of the first tetragonal lattice (the major twin component), although the actual twinning operation that explains the observed diffraction pattern both qualitatively and quantitatively is shown to be conventional 90° twinning by the m[101] operation. Importantly, it is not necessary to invoke either monoclinic symmetry or a coexistence of tetragonal and monoclinic phases to explain the observed diffraction data. [source]


An unexpected co-crystal with a variable degree of order: 1:1 rac -1,2-cyclohexanediol/triphenylphosphine oxide

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 6 2007
Maxime A. Siegler
A 1:1 co-crystal of rac - trans -1,2-C6H10(OH)2 and (C6H5)3PO has been found that is unusual because there are no strong interactions between the two kinds of molecules, which are segregated into layers. Furthermore, neither pure rac -1,2-cyclohexanediol (CHD) nor pure triphenylphosphine oxide (TPPO) has any obvious packing problem that would make the formation of inclusion complexes likely. The TPPO layers are very much like those found in two of the four known polymorphs of pure TPPO. The hydrogen-bonded ribbons of CHD are similar to those found in other vic -diol crystals. The co-crystals are triclinic (space group P), but the deviations from monoclinic symmetry (space group C2/c) are small. The magnitudes of those deviations depend on the solvent from which the crystal is grown; the deviations are largest for crystals grown from acetone, smallest for crystals grown from toluene, and intermediate for crystals grown from ethanol. The deviations arise from incomplete enantiomeric disorder of the R,R and S,S diols; this disorder is not required by symmetry in either space group, but occupancy factors are nearly 0.50 when the structure is refined as monoclinic. When the structure is refined as triclinic the deviations of the occupancy factors from 0.50 mirror the deviations from monoclinic symmetry because information about the partial R,R/S,S ordering is transmitted from one diol layer to the next through the very pseudosymmetric TPPO layer. Analyses suggest individual CHD layers are at least mostly ordered. The degree of order seems to be established at the time the crystal is grown and is unlikely to change with heating or cooling. Thermal data suggest the existence of the co-crystal is a consequence of kinetic rather than thermodynamic factors. [source]


A five-dimensional structural investigation of the misfit layer compound [Bi0.87SrO2]2[CoO2]1.82

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 2 2000
H. Leligny
The structure of the misfit layer compound [BiSrO][CoO], bismuth strontium cobaltite, was determined by single-crystal X-ray diffraction using the five-dimensional superspace-group formalism. This composite crystal, of monoclinic symmetry, is composed of two subsystems exhibiting incommensurate periodicities along b, the binary axis direction. The first composite part [BiSrO] displays an intrinsic modulation of planar monoclinic type characterized by the wavevector . The second composite part [CoO] shows two different centered lattice variants. The structure of the misfit layer crystal can be described as an alternation along c of distorted rock-salt-type slabs, formed from [BiO] and [SrO] layers (first subsystem), and of [CoO] layers (second subsystem) displaying a distorted CdI -type structure. Two main structural results are obtained. First, as a consequence of the intrinsic modulation, disordered zones, characterized by Bi vacancies, are regularly distributed in the [BiO] layers. Second, strong chemical bonds are implied between the strontium atoms of the first subsystem and the oxygen atoms of the second one. [source]


A case of structure determination using pseudosymmetry

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 12 2009
Sergei Radaev
Here, a case is presented of an unusual structure determination which was facilitated by the use of pseudosymmetry. Group A streptococcus uses cysteine protease Mac-1 (also known as IdeS) to evade the host immune system. Native Mac-1 was crystallized in the orthorhombic space group P21212. Surprisingly, crystals of the inactive C94A mutant of Mac-1 displayed monoclinic symmetry with space group P21, despite the use of native orthorhombic Mac-1 microcrystals for seeding. Attempts to solve the structure of the C94A mutant by MAD phasing in the monoclinic space group did not produce an interpretable map. The native Patterson map of the C94A mutant showed two strong peaks along the (1 0 1) diagonal, indicating possible translational pseudosymmetry in space group P21. Interestingly, one-third of the monoclinic reflections obeyed pseudo-orthorhombic P21212 symmetry similar to that of the wild-type crystals and could be indexed and processed in this space group. The pseudo-orthorhombic and monoclinic unit cells were related by the following vector operations: am = bo,co, bm = ao and cm = ,2co,bo. The pseudo-orthorhombic subset of data produced good SAD phases, leading to structure determination with one monomer in the asymmetric unit. Subsequently, the structure of the Mac-1 mutant in the monoclinic form was determined by molecular replacement, which showed six molecules forming three translationally related dimers aligned along the (1 0 1) diagonal. Knowing the geometric relationship between the pseudo-orthorhombic and the monoclinic unit cells, all six molecules can be generated in the monoclinic unit cell directly without the use of molecular replacement. The current case provides a successful example of the use of pseudosymmetry as a powerful phase-averaging method for structure determination by anomalous diffraction techniques. In particular, a structure can be solved in a higher pseudosymmetry subcell in which an NCS operator becomes a crystallographic operator. The geometrical relationships between the subcell and parental cell can be used to generate a complete molecular representation of the parental asymmetric unit for refinement. [source]


Crystallization and preliminary X-ray analysis of eukaryotic initiation factor 4E from Pisum sativum

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 8 2009
Jamie A. Ashby
Crystals of an N-terminally truncated 20,kDa fragment of Pisum sativum eIF4E (,N-eIF4E) were grown by vapour diffusion. X-ray data were recorded to a resolution of 2.2,Å from a single crystal in-house. Indexing was consistent with primitive monoclinic symmetry and solvent-content estimations suggested that between four and nine copies of the eIF4E fragment were possible per crystallographic asymmetric unit. eIF4E is an essential component of the eukaryotic translation machinery and recent studies have shown that point mutations of plant eIF4Es can confer resistance to potyvirus infection. [source]