Home About us Contact | |||
Modern Ecology (modern + ecology)
Selected AbstractsRecent innovations in marine biologyMARINE ECOLOGY, Issue 2009Ferdinando Boero Abstract Modern ecology arose from natural history when Vito Volterra analysed Umberto D'Ancona's time series of Adriatic fisheries, formulating the famous equations describing the linked fluctuations of a predator,prey system. The shift from simple observation to careful sampling design, and hypothesis building and testing, often with manipulative approaches, is probably the most relevant innovation in ecology, leading from descriptive to experimental studies, with the use of powerful analytical tools to extract data (from satellites to molecular analyses) and to treat them, and modelling efforts leading to predictions. However, the historical component, time, is paramount in environmental systems: short-term experiments must cope with the long term if we want to understand change. Chaos theory showed that complex systems are inherently unpredictable: equational, predictive science is only feasible over the short term and for a small number of variables. Ecology is characterized by a high number of variables (e.g. species) interacting over wide temporal and spatial scales. The greatest recent conceptual innovation, thus, is to have realized that natural history is important, and that the understanding of complexity calls for humility. This is not a return to the past, because now we can give proper value to statistical approaches aimed at formalizing the description and the understanding of the natural world in a rigorous way. Predictions can only be weak, linked to the identification of the attractors of chaotic systems, and are aimed more at depicting scenarios than at forecasting the future with precision. Ecology was originally split into two branches: autecology (ecology of species) and synecology (ecology of species assemblages, communities, ecosystems). The two approaches are almost synonymous with the two fashionable concepts of today: ,biodiversity' and ,ecosystem functioning'. A great challenge is to put the two together and work at multiple temporal and spatial scales. This requires the identification of all variables (i.e. species and their ecology: biodiversity, or autoecology) and of all connections among them and with the physical world (i.e. ecosystem functioning, or synecology). Marine ecosystems are the least impacted by human pressures, compared to terrestrial ones, and are thus the best arena to understand the structure and function of the natural world, allowing for comparison between areas with and areas without human impact. [source] Challenges in the application of geometric constraint modelsGLOBAL ECOLOGY, Issue 3 2007Craig R. McClain ABSTRACT Discerning the processes influencing geographical patterns of species richness remains one of the central goals of modern ecology. Traditional approaches to exploring these patterns have focused on environmental and ecological correlates of observed species richness. Recently, some have suggested these approaches suffer from the lack of an appropriate null model that accounts for species ranges being constrained to occur within a bounded domain. Proponents of these null geometric constraint models (GCMs), and the mid-domain effect these models produce, argue their utility in identifying meaningful gradients in species richness. This idea has generated substantial debate. Here we discuss what we believe are the three major challenges in the application of GCMs. First, we argue that there are actually two equally valid null models for the random placement of species ranges within a domain, one of which actually predicts a uniform distribution of species richness. Second, we highlight the numerous decisions that must be made to implement a GCM that lead to marked differences in the predictions of the null model. Finally, we discuss challenges in evaluating the importance of GCMs once they have been implemented. [source] National-scale metacommunity dynamics of carabid beetles in UK farmlandJOURNAL OF ANIMAL ECOLOGY, Issue 2 2008David R. Brooks Summary 1Understanding the wide-scale processes controlling communities across multiple sites is a foremost challenge of modern ecology. Here, data from a nation-wide network of field sites are used to describe the metacommunity dynamics of arable carabid beetles. This is done by modelling how communities are structured at a local level, by changes in the environment of the sampled fields and, at a regional level, by fitting spatial parameters describing latitudinal and longitudinal gradients. 2Local and regional processes demonstrated independent and significant capacities for structuring communities. Within the local environment, crop type was found to be the primary determinant of carabid community composition. The regional component included a strong response to a longitudinal gradient, with significant increases in diversity in an east-to-west direction. 3Carabid metacommunities seem to be structured by a combination of species sorting dynamics, operating at two different, but equally important, spatial scales. At a local scale, species are sorted along a resource gradient determined by crop type. At a wider spatial scale species appear to be sorted along a longitudinal gradient. 4Nation-wide trends in communities coincided with known gradients of increased homogeneity of habitat mosaics and agricultural intensification. However, more work is required to understand fully how communities are controlled by the interaction of crops with changes in landscape structure at different spatial scales. 5We conclude that crop type is a powerful determinant of carabid biodiversity, but that it cannot be considered in isolation from other components of the landscape for optimal conservation policy. [source] Modern distribution of saltmarsh testate amoebae: regional variability of zonation and response to environmental variablesJOURNAL OF QUATERNARY SCIENCE, Issue 5-6 2002Dan J. Charman Abstract Sea-level reconstruction from biological indicators in saltmarsh sediments requires an understanding of the modern ecology of the organisms concerned. Previous work suggested that testate amoebae are a potential new group of organisms to use for sea-level reconstruction, especially combined with diatoms and foraminifera. This paper analyses data from three saltmarshes on the Taf estuary, South Wales, the River Erme, Devon, and at Brancaster, Norfolk (UK) to (i) test for the presence and zonation of testate amoebae in relation to elevation; (ii) examine the similarity of zonation patterns between marshes; and (iii) explore the relationship between assemblage composition and a wider range of environmental variables. In addition we provide an update on the identification of testate amoebae on saltmarshes. Our results confirm that at all sites the primary environmental gradient is tidal inundation. Major changes in taxa along the tidal gradient are similar except for the lowest elevations, where different taxa become dominant at different sites. Canonical correspondence analysis (CCA) shows that assemblage composition is also strongly related to other variables, independent of the tidal position. Salinity, particle size and organic matter content are particularly important, and there is a statistically significant geographical effect on assemblages. Relationships between sea-level and assemblage composition are often stronger for individual sites, suggesting that local data sets should be used for quantitative sea-level reconstructions. However, the combined data set would provide more robust estimates of past sea-level change from fossil data. Other environmental variables explain as much of the variability in species assemblages as tidal parameters and should be considered more often in sea-level reconstructions based on microfossil indicators. Copyright © 2002 John Wiley & Sons, Ltd. [source] |