Home About us Contact | |||
Modern Analogues (modern + analogue)
Selected AbstractsDid ciguatera prompt the late Holocene Polynesian voyages of discovery?JOURNAL OF BIOGEOGRAPHY, Issue 8 2009Teina Rongo Abstract The famous Polynesian voyages characterized an intensive network of cultural exchange and colonization that was particularly active from ad 1000 to 1450. But, why would large groups of people leave their homelands to voyage into the unknown? Oceanic voyages are risky, albeit less so today than in the past. Landfalls were not guaranteed improvements over ports of departure. Taking the Cook Islands as an example, we ask whether harmful algal blooms that result in ciguatera fish poisoning in humans prompted past and present emigration pulses of peoples from within Polynesia. We take a multipronged approach to examine our hypothesis, involving: (1) archaeological evidence, (2) ciguatera fish poisoning reports since the 1940s, and (3) climate and temperature oscillations using palaeodatasets. The archaeological records of fish bones and hooks show abrupt changes in fishing practices in post- ad 1450 records. Sudden dietary shifts are not linked to overfishing, but may be a sign of ciguatera fish poisoning and adjustment of fishing preference. While fishes form the staple diet of Polynesians, such poisoning renders fishes unusable. We show that ciguatera fish poisoning events coincide with Pacific Decadal Oscillations and suggest that the celebrated Polynesian voyages across the Pacific Ocean may not have been random episodes of discovery to colonize new lands, but rather voyages of necessity. A modern analogue (in the 1990s) was the shift towards processed foods in the Cook Islands during ciguatera fish poisoning events, and mass emigration of islanders to New Zealand and Australia. [source] Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: implications for drainage network evolution in fold-thrust beltsBASIN RESEARCH, Issue 1 2001B. K. Horton ABSTRACT Fluvial megafans chronicle the evolution of large mountainous drainage networks, providing a record of erosional denudation in adjacent mountain belts. An actualistic investigation of the development of fluvial megafans is presented here by comparing active fluvial megafans in the proximal foreland basin of the central Andes to Tertiary foreland-basin deposits exposed in the interior of the mountain belt. Modern fluvial megafans of the Chaco Plain of southern Bolivia are large (5800,22 600 km2), fan-shaped masses of dominantly sand and mud deposited by major transverse rivers (Rio Grande, Rio Parapeti, and Rio Pilcomayo) emanating from the central Andes. The rivers exit the mountain belt and debouch onto the low-relief Chaco Plain at fixed points along the mountain front. On each fluvial megafan, the presently active channel is straight in plan view and dominated by deposition of mid-channel and bank-attached sand bars. Overbank areas are characterized by crevasse-splay and paludal deposition with minor soil development. However, overbank areas also contain numerous relicts of recently abandoned divergent channels, suggesting a long-term distributary drainage pattern and frequent channel avulsions. The position of the primary channel on each megafan is highly unstable over short time scales. Fluvial megafans of the Chaco Plain provide a modern analogue for a coarsening-upward, > 2-km-thick succession of Tertiary strata exposed along the Camargo syncline in the Eastern Cordillera of the central Andean fold-thrust belt, about 200 km west of the modern megafans. Lithofacies of the mid-Tertiary Camargo Formation include: (1) large channel and small channel deposits interpreted, respectively, as the main river stem on the proximal megafan and distributary channels on the distal megafan; and (2) crevasse-splay, paludal and palaeosol deposits attributed to sedimentation in overbank areas. A reversal in palaeocurrents in the lowermost Camargo succession and an overall upward coarsening and thickening trend are best explained by progradation of a fluvial megafan during eastward advance of the fold-thrust belt. In addition, the present-day drainage network in this area of the Eastern Cordillera is focused into a single outlet point that coincides with the location of the coarsest and thickest strata of the Camargo succession. Thus, the modern drainage network may be inherited from an ancestral mid-Tertiary drainage network. Persistence and expansion of Andean drainage networks provides the basis for a geometric model of the evolution of drainage networks in advancing fold-thrust belts and the origin and development of fluvial megafans. The model suggests that fluvial megafans may only develop once a drainage network has reached a particular size, roughly 104 km2, a value based on a review of active fluvial megafans that would be affected by the tectonic, climatic and geomorphologic processes operating in a given mountain belt. Furthermore, once a drainage network has achieved this critical size, the river may have sufficient stream power to prove relatively insensitive to possible geometric changes imparted by growing frontal structures in the fold-thrust belt. [source] THE ,LITTLE ICE AGE': RE-EVALUATION OF AN EVOLVING CONCEPTGEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2005JOHN A. MATTHEWS ABSTRACT. This review focuses on the development of the ,Little Ice Age' as a glaciological and climatic concept, and evaluates its current usefulness in the light of new data on the glacier and climatic variations of the last millennium and of the Holocene. ,Little Ice Age' glacierization occurred over about 650 years and can be defined most precisely in the European Alps (c. AD 1300,1950) when extended glaciers were larger than before or since. ,Little Ice Age' climate is defined as a shorter time interval of about 330 years (c. AD 1570,1900) when Northern Hemisphere summer temperatures (land areas north of 20°N) fell significantly below the AD 1961,1990 mean. This climatic definition overlaps the times when the Alpine glaciers attained their latest two highstands (AD 1650 and 1850). It is emphasized, however, that ,Little Ice Age' glacierization was highly dependent on winter precipitation and that ,Little Ice Age' climate was not simply a matter of summer temperatures. Both the glacier-centred and the climate-centred concepts necessarily encompass considerable spatial and temporal variability, which are investigated using maps of mean summer temperature variations over the Northern Hemisphere at 30-year intervals from AD 1571 to 1900. ,Little Ice Age'-type events occurred earlier in the Holocene as exemplified by at least seven glacier expansion episodes that have been identified in southern Norway. Such events provide a broader context and renewed relevance for the ,Little Ice Age', which may be viewed as a ,modern analogue' for the earlier events; and the likelihood that similar events will occur in the future has implications for climatic change in the twenty-first century. It is concluded that the concept of a ,Little Ice Age' will remain useful only by (1) continuing to incorporate the temporal and spatial complexities of glacier and climatic variations as they become better known, and (2) by reflecting improved understanding of the Earth-atmosphere-ocean system and its forcing factors through the interaction of palaeoclimatic reconstruction with climate modelling. [source] A simulation approach to determine statistical significance of species turnover peaks in a species-rich tropical cloud forestDIVERSITY AND DISTRIBUTIONS, Issue 6 2007K. Bach ABSTRACT Use of ,-diversity indices in the study of spatial distribution of species diversity is hampered by the difficulty of applying significance tests. To overcome this problem we used a simulation approach in a study of species turnover of ferns, aroids, bromeliads, and melastomes along an elevational gradient from 1700 m to 3400 m in a species-rich tropical cloud forest of Bolivia. Three parameters of species turnover (number of upper/lower elevational species limits per elevational step, Wilson,Shmida similarity index between adjacent steps) were analysed. Significant species turnover limits were detected at 2000 (± 50) m and 3050 m, which roughly coincided with the elevational limits of the main vegetation types recognized in the study area. The taxon specificity of elevational distributions implies that no single plant group can be used as a reliable surrogate for overall plant diversity and that the response to future climate change will be taxon-specific, potentially leading to the formation of plant communities lacking modern analogues. Mean elevational range size of plant species was 490 m (± 369). Elevational range sizes of terrestrial species were shorter than those of epiphytes. We conclude that our simulation approach provides an alternative approach for assessing the statistical significance of levels of species turnover along ecological gradient without the limitations imposed by traditional statistical approaches. [source] The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formationsGEOBIOLOGY, Issue 3 2005K. O. KONHAUSER ABSTRACT During deposition of late Archean,early Palaeoproterozoic Precambrian banded iron formations (BIFs) the downward flux of ferric hydroxide (Fe(OH)3) and phytoplankton biomass should have facilitated microbial Fe(III) reduction. However, quantifying the significance of such a metabolic pathway in the Precambrian is extremely difficult, considering the post-depositional alteration of the rocks and the lack of ideal modern analogues. Consequently, we have very few constraints on the Fe cycle at that time, namely (i) the concentration of dissolved Fe(II) in the ocean waters; (ii) by what mechanisms Fe(II) was oxidized (chemical, photochemical or biological, the latter using either O2 or light); (iii) where the ferric hydroxide was precipitated (over the shelf vs. open ocean); (iv) the amount of phytoplankton biomass, which relates to the nutrient status of the surface waters; (v) the relative importance of Fe(III) reduction vs. the other types of metabolic pathways utilized by sea floor microbial communities; and (vi) the proportion of primary vs. diagenetic Fe(II) in BIF. Furthermore, although estimates can be made regarding the quantity of reducing equivalents necessary to account for the diagenetic Fe(II) component in Fe-rich BIF layers, those same estimates do not offer any insights into the magnitude of Fe(III) actually generated within the water column, and hence, the efficiency of Fe and C recycling prior to burial. Accordingly, in this study, we have attempted to model the ancient Fe cycle, based simply on conservative experimental rates of photosynthetic Fe(II) oxidation in the euphotic zone. We estimate here that under ideal growth conditions, as much as 70% of the biologically formed Fe(III) could have been recycled back into the water column via fermentation and organic carbon oxidation coupled to microbial Fe(III) reduction. By comparing the potential amount of biomass generated phototrophically with the reducing equivalents required for Fe(III) reduction and magnetite formation, we also hypothesize that another anaerobic metabolic pathway might have been utilized in the surface sediment to oxidize the fermentation by-products. Based on the premise that the deep ocean waters were anoxic, this role could have been fulfilled by methanogens, and maybe even methanotrophs that employed Fe(III) reduction. [source] Diversity patterns amongst herbivorous dinosaurs and plants during the Cretaceous: implications for hypotheses of dinosaur/angiosperm co-evolutionJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2009R. J. BUTLER Abstract Palaeobiologists frequently attempt to identify examples of co-evolutionary interactions over extended geological timescales. These hypotheses are often intuitively appealing, as co-evolution is so prevalent in extant ecosystems, and are easy to formulate; however, they are much more difficult to test than their modern analogues. Among the more intriguing deep time co-evolutionary scenarios are those that relate changes in Cretaceous dinosaur faunas to the primary radiation of flowering plants. Demonstration of temporal congruence between the diversifications of co-evolving groups is necessary to establish whether co-evolution could have occurred in such cases, but is insufficient to prove whether it actually did take place. Diversity patterns do, however, provide a means for falsifying such hypotheses. We have compiled a new database of Cretaceous dinosaur and plant distributions from information in the primary literature. This is used as the basis for plotting taxonomic diversity and occurrence curves for herbivorous dinosaurs (Sauropodomorpha, Stegosauria, Ankylosauria, Ornithopoda, Ceratopsia, Pachycephalosauria and herbivorous theropods) and major groups of plants (angiosperms, Bennettitales, cycads, cycadophytes, conifers, Filicales and Ginkgoales) that co-occur in dinosaur-bearing formations. Pairwise statistical comparisons were made between various floral and faunal groups to test for any significant similarities in the shapes of their diversity curves through time. We show that, with one possible exception, diversity patterns for major groups of herbivorous dinosaurs are not positively correlated with angiosperm diversity. In other words, at the level of major clades, there is no support for any diffuse co-evolutionary relationship between herbivorous dinosaurs and flowering plants. The diversification of Late Cretaceous pachycephalosaurs (excluding the problematic taxon Stenopelix) shows a positive correlation, but this might be spuriously related to poor sampling in the Turonian,Santonian interval. Stegosauria shows a significant negative correlation with flowering plants and a significant positive correlation with the nonflowering cycadophytes (cycads, Bennettitales). This interesting pattern is worthy of further investigation, and it reflects the decline of both stegosaurs and cycadophytes during the Early Cretaceous. [source] Response of testate amoeba assemblages to environmental and climatic changes during the Lateglacial,Holocene transition at Lake Lautrey (Jura Mountains, eastern France),JOURNAL OF QUATERNARY SCIENCE, Issue 6 2010Adeline A. J. Wall Abstract We tested the response of lacustrine testate amoebae (thecamoebians) to climate and environmental changes for the Lateglacial,Holocene transition. The palaeoenvironmental history of the study site (Lake Lautrey, Jura Mountains, eastern France) was previously established based on high-resolution multi-proxy studies of the same core. The present study is characterised by a high taxonomic resolution (54 taxa), inclusion of small species (down to 25,µm) and high total counts (>500 individuals per sample on average). Changes in the composition of testate amoeba assemblages (dominant species and assemblage structure), as well as in the accumulation rate (tests cm,2 a,1), corresponded to major climatic phases (i.e. Oldest Dryas, Bølling,Allerød Interstadial, Younger Dryas, Preboreal) as well as changes in organic matter inputs. Furthermore, decreases in the accumulation rate characterised minor short-lived cooling events, such as Older Dryas event or Gerzensee oscillation. However, the Preboreal oscillation, which was well registered by other proxies at Lake Lautrey, could not be recognised in the testate amoeba record. This work demonstrates that lacustrine testate amoebae can be used for palaeoclimatic and palaeoecological reconstructions. Nevertheless, a better understanding of the relation between climate, organic matter and lacustrine testate amoebae requires further high-resolution studies based on multi-proxy approaches and the development of appropriate modern analogues. Copyright © 2010 John Wiley & Sons, Ltd. [source] Recognition and palaeoclimatic implications of late Quaternary niche glaciation in eastern Lesotho,JOURNAL OF QUATERNARY SCIENCE, Issue 7 2009Stephanie C. Mills Abstract Geomorphic evidence of former glaciation in the high Drakensberg of southern Africa has proven controversial, with conflicting glacial and non-glacial interpretations suggested for many landforms. This paper presents new geomorphological, sedimentological and micromorphological data, and glacier mass-balance modelling for a site in the Leqooa Valley, eastern Lesotho, preserving what are considered to be moraines of a former niche glacier that existed during the Last Glacial Maximum (LGM). The geomorphology and macro-sedimentology of the deposits display characteristics of both active and passive transport by glacial processes. However, micromorphological analyses indicate a more complex history of glacial deposition and subsequent reworking by mass movement processes. The application of a glacier reconstruction technique to determine whether this site could have supported a glacier indicates a reconstructed glacier equilibrium line altitude (ELA) of 3136,m a.s.l. and palaeoglacier mass balance characteristics comparable with modern analogues, reflecting viable, if marginal glaciation. Radiocarbon dates obtained from organic sediment within the moraines indicate that these are of LGM age. The reconstructed palaeoclimatic conditions during the LGM suggest that snow accumulation in the Drakensberg was significantly higher than considered by other studies, and has substantial relevance for tuning regional climate models for southern Africa during the last glacial cycle. Copyright © 2009 John Wiley & Sons, Ltd. [source] An improved methodology of the modern analogues technique for palaeoclimate reconstruction in arid and semi-arid regionsBOREAS, Issue 1 2010WENYING JIANG Jiang, W., Guiot, J., Chu, G., Wu, H., Yuan, B., Hatté, C. & Guo, Z. 2009: An improved methodology of the modern analogues technique for palaeoclimate reconstruction in arid and semi-arid regions. Boreas, 10.1111/j.1502-3885.2009.00115.x. ISSN 0300-9483. This study presents an improved method of the plant functional type modern analogues technique (PFT-MAT) in which environmental proxies and a moisture index (,, i.e. ratio of actual evapotranspiration to potential evapotranspiration) are used to constrain the selection of modern analogues. The method is tested using high-resolution, precisely dated palaeorecords (pollen, Pediastrum and ,18O of authigenic carbonate) from Lake Bayanchagan, northern China. The unconstrained and constrained PFT-MAT produces general agreement for Holocene climate changes, with a wet period between 11 000 and 5500 cal. yr BP and a warm interval between 11 000 and 8000 cal. yr BP. However, there are significant differences in the details of their reconstruction. The constrained PFT-MAT generally yields smaller error bars for the reconstructed climate parameters than the unconstrained PFT-MAT. In addition, three prominent climatic events are identified from the constrained reconstructions; namely, a cold event around 8400 cal. yr BP and two warm events around 6000 and 2000 cal. yr BP, which is consistent with other regional palaeoclimatic records. Our data show that changes in tree components correlate well with , variations during the entire Holocene, with the highest tree components and highest , values between 8000 and 5500 cal. yr BP, indicating the dominant role of , in the growth of trees in northern China rather than single temperature or precipitation. The improved PFT-MAT is therefore an efficient method for quantitative reconstructions of palaeoclimate in arid and semi-arid regions. [source] Interglacial Chironomidae (Diptera) from Thule, Northwest Greenland: matching modern analogues to fossil assemblagesBOREAS, Issue 4 2003KLAUS PETER BRODERSEN An analysis of subfossil insect remains (Diptera, Chironomidae) from an interglacial site at Narsaarsuk near Thule Air Base, NW Greenland, was undertaken to complement our understanding of last interglacial environments in the Arctic by analogue matching to modern chironomid assemblages. The subfossil larval midge head capsules were well preserved and 82% of the chironomid remains were identified as eight different extant chironomid taxa. The assemblage was dominated by the lotic Diamesa (43.8%), a number of lentic taxa (Hydrobaenus, Psectrocladius, Cricotopus/Orthocladius) and a few semi-aquatic taxa (Smittia, Chaetocladius). A single black fly head capsule (Diptera, Simuliidae) was registered. The interglacial sample was compared to subfossil chironomid assemblages from 42 lakes in West Greenland, two glacier lakes (with and without river influence) and a quantitative zoobenthos study from Narsaq Elv. Similarity analysis, analogue matching and multidimensional scaling suggest a lotic, cold, glacier-fed interglacial palaeo-biotope. Quantitative temperature reconstruction was not possible owing to a high dissimilarity to modern lentic chironomid assemblages from West Greenland. However, the simple numerical methods convincingly managed to reflect an interglacial river and stream environment, which can be difficult to document from other palaeoecological data. [source] Pollen-inferred palaeoclimate reconstructions in mountain areas: problems and perspectives,JOURNAL OF QUATERNARY SCIENCE, Issue 6 2006Elena Ortu Abstract Transfer functions are an efficient tool for the quantitative reconstruction of past climate from low to mid-elevation pollen sites. However, the application of existing methods to high-altitude pollen assemblages frequently leads to unrealistic results. In the aim of understanding the causes of these biases, the standard ,best modern analogue' method has been applied to two high-altitude pollen sequences to provide quantitative climate estimates for the Lateglacial and Holocene periods. Both pollen sequences (Laghi dell'Orgials, 2130,m, SW aspect and Lago delle Fate, 2240,m, E aspect) are located in the subalpine belt, on opposing sides of the St. Anna di Vinadio Valley (Italian Maritime Alps). Different results were obtained from the two sequences. The largest differences occurred in palaeotemperature reconstruction, with notable differences in both the values and trends at each site. These biases may be attributed to: (1) a lack of high elevation ,best modern analogues' in the database of modern samples; (2) the problem of pollen taxa that have multiple climatic significance; (3) problems related to the complexity of mountainous ecosystems, such as the phenomenon of uphill transport of tree pollen by wind. Possible improvements to the reconstruction process are discussed. Copyright © 2006 John Wiley & Sons, Ltd. [source] |