Home About us Contact | |||
Moderate Temperatures (moderate + temperature)
Selected AbstractsEffects of Decomposition on Gunshot Wound Characteristics: Under Moderate Temperatures with Insect ActivityJOURNAL OF FORENSIC SCIENCES, Issue 2 2009Lauren E. MacAulay B.Sc. (Hons) Abstract:, Previous studies document characteristics of gunshot wounds shortly after they were inflicted. This study was conducted to determine if the early stages of decomposition obscure or alter the physical surface characteristics of gunshot wounds, thereby affecting the quantity and quality of information retrievable from such evidence. The study was conducted in August and September, 2005 in Nova Scotia, Canada in forested and exposed environments. Recently killed pigs were used as research models and were shot six times each at three different ranges (contact, 2.5 cm, and 1.5 m). Under these test conditions, the gunshot wounds maintained the characteristics unique to each gunshot range and changes that occurred during decomposition were not critical to the interpretation of the evidence. It was concluded that changes due to decomposition under the conditions tested would not affect the collection and interpretation of gunshot wound evidence until the skin was degraded in the late active or advanced decay stage of decomposition. [source] On-Site Fabrication of Crystalline Cerium Oxide Films and Patterns by Ink-Jet Deposition Method at Moderate TemperaturesJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2008Ruwan Gallage Crystalline CeO2 films and patterns have been successfully fabricated in a "single-step process" at moderate temperature. In this process, the combination of the ink-jet technique and depositing the precursor on a hot substrate (,300°C) gave crystalline CeO2 without further heat treatment. X-ray diffraction analysis revealed that the phase formed was crystallized ceria with nanosized (<10 nm) crystallites. The film thickness was several hundred nanometers and the pattern width was about 150 ,m. Scanning electron microscopy analysis showed that the films and patterns were free of cracks and adhered to the substrate. This is the first report about the direct patterning of crystalline CeO2 without postfiring or posttreatments like masking, etching, etc. [source] Lithium-Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen StorageADVANCED FUNCTIONAL MATERIALS, Issue 2 2009Li Li Abstract Ammonia borane (AB) has attracted tremendous interest for on-board hydrogen storage due to its low molecular weight and high gravimetric hydrogen capacity below a moderate temperature. However, the slow kinetics, irreversibility, and formation of volatile materials (trace borazine and ammonia) limit its practical application. In this paper, a new catalytic strategy involved lithium (Li) catalysis and nanostructure confinement in mesoporous carbon (CMK-3) for the thermal decomposition of AB is developed. AB loaded on the 5% Li/CMK-3 framework releases ,7,wt % of hydrogen at a very low temperature (around 60,°C) and entirely suppresses borazine and ammonia emissions that are harmful for proton exchange membrane fuel cells. The possible mechanism for enhanced hydrogen release via catalyzed thermal decomposition of AB is discussed. [source] Palladium-Catalyzed One-Pot Conversion of Aldehydes to AmidesADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 2-3 2010Md Ashif Ali Abstract The palladium-catalyzed one-pot conversion of aldehydes into primary amides in the presence of hydroxylamine hydrochloride in aqueous dimethyl sulfoxide (DMSO) at moderate temperature is described. The process is selective and free from the addition of an external chelating ligand. [source] Synthesis and characterization of sulfonated-fluorinated, hydrophilic-hydrophobic multiblock copolymers for proton exchange membranesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 4 2009Xiang Yu Abstract Hydrophilic/hydrophobic block copolymers as proton exchange membranes (PEMs) has become an emerging area of research in recent years. These copolymers were obtained through moderate temperature (, 100 °C) coupling reactions, which minimize the ether-ether interchanges between hydrophobic and hydrophilic telechelic oligomers via a nucleophilic aromatic substitution mechanism. The hydrophilic blocks were based on the nucleophilic step polymerization of 3,3,-disulfonated, 4,4,-dichlorodiphenyl sulfone with an excess 4,4,-biphenol to afford phenoxide endgroups. The hydrophobic (fluorinated) blocks were largely based on decafluoro biphenyl (excess) and various bisphenols. The copolymers were obtained in high molecular weights and were solvent cast into tough membranes, which had nanophase separated hydrophilic and hydrophobic regions. The performance and structure-property relationships of these materials were studied and compared to random copolymer systems. NMR results supported that the multiblock sequence had been achieved. They displayed superior proton conductivity, due to the ionic proton conducting channels formed through the self-assembly of the sulfonated blocks. The nano-phase separated morphologies of the copolymer membranes were studied and confirmed by atomic force microscopy. Through control of a variety of parameters, including ion exchange capacity and sequence lengths, performances as high, or even higher than those of the state-of-the-art PEM, Nafion, were achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1038,1051, 2009 [source] Unexpected reactions associated with the xanthate-mediated polymerization of N -vinylpyrrolidoneJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 19 2008Gwenaelle Pound Abstract The monomer N -vinylpyrrolidone (NVP) undergoes side reactions in the presence of R group functional xanthates and impurities. The fate of the monomer NVP and a selection of six O -ethyl xanthates during xanthate-mediated polymerization were studied via NMR spectroscopy. A high number of by-products were identified. Significant side reactions affecting NVP include the formation of an unsaturated dimer and hydration products in bulk or in solution in C6D6. In addition, the xanthate adjacent to a NVP unit was found to undergo elimination at moderate temperature (60,70 °C), resulting in unsaturated species and the formation of new xanthate species. The presence of the chlorinated compound ,-chlorophenyl acetic acid, ethyl ester, a precursor in the synthesis of the xanthate S -(2-ethyl phenylacetate) O -ethyl xanthate, resulted in a dramatic increase in the rate of side reactions such as unsaturated dimer formation and a high ratio of unsaturated chain ends. The conditions for the occurrence of such side reactions are discussed in this article, with relevance to increasing the control over the polymerization kinetics, endgroup functionality, and control over the molar mass distribution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6575,6593, 2008 [source] Cross-linked Polyvinyl Alcohol as a Binder for Gelcasting and Green MachiningJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2008France Chabert Submicrometer alumina suspensions, dispersed in aqueous acidic solutions of polyvinyl alcohol (PVA) and 2,5-dimethoxy-2,5-dihydrofuran, have been evaluated for suitability as a cross-linkable binder system for casting complex-shaped ceramic components. Suspensions of up to 50 vol% solids have rheological behavior, which is suitable for pouring and filling molds. Complex-shaped green bodies are then formed by heating the suspension in the mold for a period of time (typically 15,60 min) at moderate temperature (60°,80°C) to gel the suspension. High green densities (58%,62% of full density) can be obtained. The dried green bodies have strength in excess of 1 MPa and may be readily machined. No more than 1,3 wt% PVA per weight of alumina is necessary, ensuring burnout that minimizes generation of flaws. The ceramic components can be fired to >96% of full density when fired for 2 h at 1400°,1450°C. Cross-linkable PVA may receive more widespread acceptance in ceramic processing than previous gelcasting formulations because PVA is already a common processing additive. [source] On-Site Fabrication of Crystalline Cerium Oxide Films and Patterns by Ink-Jet Deposition Method at Moderate TemperaturesJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2008Ruwan Gallage Crystalline CeO2 films and patterns have been successfully fabricated in a "single-step process" at moderate temperature. In this process, the combination of the ink-jet technique and depositing the precursor on a hot substrate (,300°C) gave crystalline CeO2 without further heat treatment. X-ray diffraction analysis revealed that the phase formed was crystallized ceria with nanosized (<10 nm) crystallites. The film thickness was several hundred nanometers and the pattern width was about 150 ,m. Scanning electron microscopy analysis showed that the films and patterns were free of cracks and adhered to the substrate. This is the first report about the direct patterning of crystalline CeO2 without postfiring or posttreatments like masking, etching, etc. [source] Photonic circuits writing with UV pulsed laserPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 1 2007K. R. Kribich Abstract Photonics technology is employed in a growing number of applications. Biological and chemical sensors (E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists, Wiley, New York, 1991 [1]) for health and environment demand an adaptable technology. Network development towards the end-user requires more interconnecting components. Vision, lighting, data processing in hostile environment (spatial, military) need specific technologies. A flexible and low-cost process using good quality material is necessary. The sol-gel process is a chemical method to fabricate glasses at ambient pressure and moderate temperature. Hybrid materials (H.K. Schmidt et al., Proc. SPIE 3136, 220 (1997) [2]), mixing organic and inorganic parts, offer the advantages of polymer-like materials and glasses. We report on a new hybrid sol-gel technology to overcome the drawbacks of the formerly presented one (H. Krug, F. Teillantes, P.W. Oliviers, and H. Schmidt, Proc. SPIE 1758, 448 (1992) [3]). We present the material synthesis, an accurate and flexible fabrication process based on a pulsed UV laser lithography system and the characterisation of the optical waveguides and photonic circuits realised. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] ChemInform Abstract: A Novel Palladium-Catalyzed Cross-Coupling of Thiomethylated Alkynes with Functionalized Organozinc Reagents.CHEMINFORM, Issue 41 2010Laurin Melzig Abstract The method is carried out at moderate temperature without the need for copper salts. [source] Compatible solutes of organisms that live in hot saline environmentsENVIRONMENTAL MICROBIOLOGY, Issue 9 2002Helena Santos Summary The accumulation of organic solutes is a prerequisite for osmotic adjustment of all microorganisms. Thermophilic and hyperthermophilic organisms generally accumulate very unusual compatible solutes namely, di- myo -inositol-phosphate, di-mannosyl-di- myo -inositol-phosphate, di-glycerol-phosphate, mannosylglycerate and mannosylglyceramide, which have not been identified in bacteria or archaea that grow at low and moderate temperatures. There is also a growing awareness that some of these compatible solutes may have a role in the protection of cell components against thermal denaturation. Mannosylglycerate and di-glycerol-phosphate have been shown to protect enzymes and proteins from thermal denaturation in vitro as well, or better, than compatible solutes from mesophiles. The pathways leading to the synthesis of some of these compatible solutes from thermophiles and hyperthermophiles have been elucidated. However, large numbers of questions remain unanswered. Fundamental and applied interest in compatible solutes and osmotic adjustment in these organisms, drives research that, will, in the near future, allow us to understand the role of compatible solutes in osmotic protection and thermoprotection of some of the most fascinating organisms known on Earth. [source] Inter-particle contact heat transfer model: an extension to soils at elevated temperaturesINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 2 2005W. H. Leong Abstract A simple ,inter-particle contact heat transfer' model for predicting effective thermal conductivity of soils at moderate temperatures (0,30°C) has been extended up to 90°C. The extended model accounts for latent heat transport by water vapour diffusion in soil air above the permanent wilting point; below that point, the soil thermal conductivity is approximated by linear interpolation without latent heat effect. By and large the best results are obtained when the latent heat is used only in the ,self consistent approximation' model with an overall root mean square error of 35% for all soils under consideration or 26% when excluding volcanic soils. This option can also be applied to moderate temperatures at which the enhanced heat transfer is negligibly small. Copyright © 2005 John Wiley & Sons, Ltd. [source] Structural characterization and dynamic water adsorption of electrospun polyamide6/montmorillonite nanofibersJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008Qi Li Abstract A facile compounding process, which combined nanocomposite process with electrospinning for preparing novel polyamide6/organic modified montmorillonite (PA6/O-MMT) composite nanofibers, is reported. In this compounding process, the O-MMT slurry was blended into the formic acid solution of PA6 at moderate temperatures, where the nanosized O-MMT particles were first dispersed in N,N -dimethyl formamide solvent homogeneously via ultrasonic mixing. Subsequently the solution via electrospinning formed nanofibers, which were collected onto aluminum foil. The O-MMT platelets were detected to be exfoliated at nanosize level and dispersed homogeneously along the axis of the nanofibers using an electron transmission microscope. Scanning electron microscope and atomic force microscope were used to analysis the size and surface morphology of polyamide6/O-MMT composite nanofibers. The addition of O-MMT reduced the surface tension and viscosity of the solution, leading to the decrease in the diameter of nanofiber and the formation of rough and ridge-shape trails on the nanofiber surface. The behavior of the dynamic water adsorption of composite nanofibers was also investigated and discussed in this article. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Ambient temperature influences aging in an annual fish (Nothobranchius rachovii)AGING CELL, Issue 6 2009Chin-Yuan Hsu Summary Extending lifespan by lowering ambient temperature in the habitat has been shown in a variety of organisms. Its mechanism, however, remains elusive. In this study, we examined the survivorship and the aging process of the annual fish (Nothobranchius rachovii) reared under high (30 °C), moderate (25 °C) and low (20 °C) ambient temperatures. The results showed that low ambient temperatures prolong survivorship, whereas high ambient temperatures shorten survivorship. At low ambient temperature, expression of senescence-associated ,-galactosidase, lipofuscin, reactive oxygen species, lipid peroxidation, protein oxidation, mitochondrial density and ADP/ATP ratio were reduced compared with those reared at high and moderate temperatures, whereas catalase activity, Mn-superoxide dismutase activities, mitochondrial membrane potential and the levels of ATP, ADP, Sirt1 and Forkhead box O expression were elevated. The expression levels of Hsp70 and CIRP showed no significant difference under any of the ambient temperatures tested. We concluded that cellular metabolism, energy utilization and gene expression are altered at lower ambient temperature, which is associated with the extension of lifespan of the annual fish. [source] Solubility and degradation of polyhydroxyalkanoate biopolymers in propylene carbonateAICHE JOURNAL, Issue 6 2010Christopher W. J. McChalicher Abstract New biobased materials and chemicals require different processing strategies than petroleum-derived commodities. The extraction and recovery of polyhydroxyalkanoate (PHA) biopolymers from the residual cellular biomass is particularly difficult because the polymer is accumulated within the cell. PHAs have low solubility in many classical polymer solvents and are most often dissolved using undesirable chlorinated solvents. The solubility kinetics is greatly diminished when these polymers are highly crystalline. Here, 1,2-propylene carbonate is used to dissolve highly crystalline polyhydroxybutyrate at ambient pressures and moderate temperatures. We have used kinetic studies of the dissolution of the crystalline material to determine the energy barrier for dissolution of the system. Further, the degradation of polyhydroxybutyrate and similarly prepared PHA block copolymers were studied during this extraction process using molecular weight characterization by gel permeation chromatography. Finally, we have used these findings to extract PHA block copolymers from dried biomass at the bench scale. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] Nitration of nitrobenzene at high-concentrations of sulfuric acid: Mass transfer and kinetic aspectsAICHE JOURNAL, Issue 3 2010M. Rahaman Abstract This article reports studies on mass transfer and kinetics of nitration of nitrobenzene at high concentrations of sulfuric acid in a batch reactor at different temperatures. The effects of concentration of sulfuric acid, speed of stirring, and temperature on mass transfer coefficient were investigated. The kinetics of nitration under homogenized conditions was studied at different sulfuric acid concentrations at these temperatures. The reaction rate constants were determined. The variation of rate constant with sulfuric acid concentration was explained by the Mc function. The activation energies of the reactions were determined from the Arrhenius plots. The regimes of the reactions were determined using the values of the mass transfer coefficients and the reaction rate constants. A model was developed for simultaneous mass transfer and chemical reaction in the aqueous phase. The yields of the three isomers of dinitrobenzene were determined, and the variation of isomer distribution with sulfuric acid concentration and temperature was analyzed. This work demonstrates that more than 90% conversion of nitrobenzene is possible at high-sulfuric acid concentrations resulting in high yield of the product even at moderate temperatures and at low speeds of stirring. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] Synthesis and characterization of ether derivatives of brominated poly(isobutylene- co -isoprene)JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 2 2006Sergio A. Guillén-Castellanos Abstract Variations of the Williamson ether synthesis were employed to prepare a range of new derivatives of brominated poly(isobutylene- co -isoprene) (BIIR). Unambiguous characterization of the polymeric products was accomplished by spectroscopic comparisons to low-molecular-weight analogues derived from brominated 2,2,4,8,8-pentamethyl-4-nonene, which served as a model for the reactive functionality found within BIIR. The substitution of bromide from BIIR occurred at moderate temperatures with stoichiometric amounts of quaternary ammonium phenoxide to yield O-alkylation products in high yields. Simple mixtures of BIIR, KOH, and aliphatic alcohols generated the desired allylic ethers when heated above 110 °C in the absence of quaternary ammonium salts. Knowledge gained from these small-molecule alkylations was used to prepare graft copolymers from BIIR and poly(ethylene oxide) through the exploitation of the apparent ability of polyethers to activate potassium alkoxides in nucleophilic substitutions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 983,992, 2006 [source] Proton Conductivity Measurements in Yttrium Barium Cerate by Impedance SpectroscopyJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 11 2002W. Grover Coors Proton-conducting solid-electrolyte perovskite ceramics based on acceptor-doped barium and strontium cerates have become the focus of extensive investigations as candidate materials for fuel cells that operate at moderate temperatures. To assess the suitability of a material for this application, it is necessary that bulk electrolyte conductivity be measured at the operating temperature. However, very little reliable published conductivity data exist above 600°C. Protonic conductivity in yttrium-doped barium cerate has been observed to be less at high temperatures than would be expected, based on the activation energy and preexponential for hydrogen transport at temperatures <300°C. Conductivity data obtained from impedance spectroscopy on BaCe0.9Y0.1O3,, over the extended temperature range of 100°,900°C are presented. An Arrhenius plot of the data shows two distinct linear regions, suggesting that two different rate-limiting processes occur in series with a break-over transition at ,250°C. The decrease in conductivity is apparently not due to dehydration. An activation energy for protonic transport of 0.26 eV, about one-half of the low-temperature value, is proposed, based on curve fitting of the high-temperature data. [source] Development and primary genetic analysis of a fertility temperature-sensitive polima cytoplasmic male sterility restorer in Brassica napusPLANT BREEDING, Issue 3 2007Z. X. Fan Abstract Over the past decade, the polima cytoplasmic male sterility (pol CMS) three-line and two-line systems have been developed for the production of hybrid seed in Brassica napus oilseed rape in China. The discovery of the novel pol CMS restorer line FL-204 is described here. It restores male fertility of hybrid plants in the pol CMS system, but hybrid seed production can only be carried out under autumn sowing in Wuhan in south China under moderate temperatures at flowering. The restorer cannot be used as a male for hybrid seed production in northwestern China (Gansu) under spring sowing conditions, because there it is more or less male sterile due to high temperatures at flowering. Because of this behaviour, it is referred to as a fertility temperature-sensitive restorer (FTSR) in this paper. F2, BC1 as well as double haploid populations were constructed to determine the inheritance of fertility restoration of FL-204 in the autumn at Wuhan and under spring sowing conditions at Gansu, respectively. Deviations from Mendelian genetics were observed. It was hypothesized that the change of fertility was the result of the interaction between nuclear genes [restoring gene (Rf) and temperature-sensitive genes (ts)] and the cytoplasm. The Rf gene in FL-204 was incapable of restoring male fertility of pol CMS lines under spring sowing conditions at Gansu where it is inactivated by the recessive ts gene present in FL-204. However, the ts gene(s) could be non-functional under moderate temperature conditions at flowering at Wuhan which allows full expression of male fertility in FL-204. The recessive ts gene(s) can only be expressed in plants containing the pol sterile cytoplasm. A method for the utilization of the FTSR pol CMS restorer FL-204 for the production of hybrid seed in B. napus oilseed rape is proposed. [source] Worldwide allele frequencies of the human apolipoprotein E gene: Climate, local adaptations, and evolutionary historyAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2010Dan T.A. Eisenberg Abstract The ,4 allele of the apolipoprotein E (APOE) gene is associated with increased cholesterol levels and heart disease. Population allele frequencies of APOE have previously been shown to vary, with ,4 frequencies generally increasing with latitude. We hypothesize that this trend resulted from natural selection protecting against low-cholesterol levels. In high-latitude cold environments and low-latitude hot environments, metabolic rate is elevated, which could require higher cholesterol levels. To explore this hypothesis, we compiled APOE allele frequencies, latitude, temperature, and elevation from populations around the world. ,4 allele frequencies show a curvilinear relationship with absolute latitude, with lowest frequencies found in the mid-latitudes where temperatures generally require less expenditure on cooling/thermogenesis. Controlling for population structure in a subset of populations did not appreciably change this pattern of association, consistent with selection pressures that vary by latitude shaping ,4 allele frequencies. Temperature records also predict APOE frequency in a curvilinear fashion, with lowest ,4 frequencies at moderate temperatures. The model fit between historical temperatures and ,4 is less than between latitude and ,4, but strengthened after correcting for estimated temperature differences during the Paleolithic. Contrary to our hypothesis, we find that elevation did not improve predictive power, and an integrated measure of the cholesterol effect of multiple APOE alleles was less related to latitude than was ,4 alone. Our results lend mixed support for a link between past temperature and human APOE allele distribution and point to the need to develop better models of past climate in future analyses. Am J Phys Anthropol 143:13,20, 2010. © 2010 Wiley-Liss, Inc. [source] Expression, purification, crystallization and preliminary X-ray crystallographic studies of a psychrophilic cellulase from Pseudoalteromonas haloplanktisACTA CRYSTALLOGRAPHICA SECTION D, Issue 7 2003Sébastien Violot The Antarctic psychrophile Pseudoalteromonas haloplanktis produces a cold-active cellulase. To date, a three-dimensional structure of a psychrophilic cellulase has been lacking. Crystallographic studies of this cold-adapted enzyme have therefore been initiated in order to contribute to the understanding of the molecular basis of the cold adaptation and the high catalytic efficiency of the enzyme at low and moderate temperatures. The catalytic core domain of the psychrophilic cellulase CelG from P. haloplanktis has been expressed, purified and crystallized and a complete diffraction data set to 1.8,Å has been collected. The space group was found to be P212121, with unit-cell parameters a = 135.1, b = 78.4, c = 44.1,Å. A molecular-replacement solution, using the structure of the mesophilic counterpart Cel5A from Erwinia chrysanthemi as a search model, has been found. [source] Morphology, growth and reproduction in the Australian house mouse: differential effects of moderate temperaturesBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2008BRONWYN M. MCALLAN The house mouse (Mus musculus domesticus) was introduced into Australia two centuries ago and is now succeeding in a wide range of habitats and climatic regions. To explore how mice exploit such extreme environments, we compared growth rate, morphology and reproductive success of animals reared under differing thermal regimes (13 °C ,cool', 22 °C ,moderate' and 30 °C ,warm') in laboratory mice derived from wild stock. ,Warm' group young were smaller and grew more slowly than those from other groups. At 6 weeks of age, body mass was less in ,warm' than in ,cool' treatment individuals; and liver mass/body mass also was less in ,warm' than in ,cool' treatment individuals. Paired kidney mass/body mass and paired adrenal mass/body mass were less in ,warm' than in ,cool' and ,moderate' treatment mice. Low heritability values indicate that these effects were from the temperature treatments rather than genetic influences. Irrespective of temperature treatment, females were more likely to produce a litter from post-partum matings if they were experienced, rather than young or reproductively naïve, and also bore more young from post-partum matings. These observations contribute to understanding of the sudden plague activities of mice in some parts of Australia and also their sparse distribution in the interior of the continent. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94, 21,30. [source] "Enzyme Test Bench," a high-throughput enzyme characterization technique including the long-term stabilityBIOTECHNOLOGY & BIOENGINEERING, Issue 2 2009Kirill Rachinskiy Abstract A new high throughput technique for enzyme characterization with specific attention to the long term stability, called "Enzyme Test Bench," is presented. The concept of the Enzyme Test Bench consists of short term enzyme tests in 96-well microtiter plates under partly extreme conditions to predict the enzyme long term stability under moderate conditions. The technique is based on the mathematical modeling of temperature dependent enzyme activation and deactivation. Adapting the temperature profiles in sequential experiments by optimal non-linear experimental design, the long term deactivation effects can be purposefully accelerated and detected within hours. During the experiment the enzyme activity is measured online to estimate the model parameters from the obtained data. Thus, the enzyme activity and long term stability can be calculated as a function of temperature. The engineered instrumentation provides for simultaneous automated assaying by fluorescent measurements, mixing and homogenous temperature control in the range of 10,85,±,0.5°C. A universal fluorescent assay for online acquisition of ester hydrolysis reactions by pH-shift is developed and established. The developed instrumentation and assay are applied to characterize two esterases. The results of the characterization, carried out in microtiter plates applying short term experiments of hours, are in good agreement with the results of long term experiments at different temperatures in 1 L stirred tank reactors of a week. Thus, the new technique allows for both: the enzyme screening with regard to the long term stability and the choice of the optimal process temperature regarding such process parameters as turn over number, space time yield or optimal process duration. The comparison of the temperature dependent behavior of both characterized enzymes clearly demonstrates that the frequently applied estimation of long term stability at moderate temperatures by simple activity measurements after exposing the enzymes to elevated temperatures may lead to suboptimal enzyme selection. Thus, temperature dependent enzyme characterization is essential in primary screening to predict its long term behavior. Biotechnol. Bioeng. 2009;103: 305,322. © 2008 Wiley Periodicals, Inc. [source] Sterilization of ginseng using a high pressure CO2 at moderate temperaturesBIOTECHNOLOGY & BIOENGINEERING, Issue 2 2009Fariba Dehghani Abstract The aim of this study was to determine the feasibility of using high pressure CO2 for sterilization of Ginseng powder, as an alternative method to conventional techniques such as ,-irradiation and ethylene oxide. The Ginseng sample used in this study was originally contaminated with fungi and 5,×,107 bacteria/g that was not suitable for oral use. This is the first time that high pressure CO2 has been used for the sterilization of herbal medicine to decrease the total aerobic microbial count (TAMC) and fungi. The effect of the process duration, operating pressure, temperature, and amount of additives on the sterilization efficiency of high pressure CO2 were investigated. The process duration was varied over 15 h; the pressure between 100 and 200 bar and the temperature between 25 and 75°C. A 2.67-log reduction of bacteria in the Ginseng sample was achieved after long treatment time of 15 h at 60°C and 100 bar, when using neat carbon dioxide. However, the addition of a small quantity of water/ethanol/H2O2 mixture, as low as 0.02 mL of each additive/g Ginseng powder, was sufficient for complete inactivation of fungi within 6 h at 60°C and 100 bar. At these conditions the bacterial count was decreased from 5,×,107 to 2.0,×,103 TAMC/g complying with the TGA standard for orally ingested products. A 4.3 log reduction in bacteria was achieved at 150 bar and 30°C, decreasing the TAMC in Ginseng sample to 2,000, below the allowable limit. However, fungi still remained in the sample. The complete inactivation of both bacteria and fungi was achieved within 2 h at 30°C and 170 bar using 0.1 mL of each additive/g Ginseng. Microbial inactivation at this low temperature opens an avenue for the sterilization of many thermally labile pharmaceutical and food products that may involve sensitive compounds to ,-radiation and chemically reactive antiseptic agents. Biotechnol. Bioeng. 2009;102: 569,576. © 2008 Wiley Periodicals, Inc. [source] Model-based characterization of an amino acid racemase from Pseudomonas putida DSM 3263 for application in medium-constrained continuous processesBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2007M. Bechtold Abstract The amino acid racemase with broad substrate specificity from Pseudomonas putida DSM 3263 was overproduced and characterized with respect to application in an integrated multi-step process (e.g., dynamic kinetic resolution) that,theoretically,would allow for 100% chemical yield and 100% enantiomeric excess. Overexpression of the racemase gene in Escherichia coli delivered cell free extract with easily sufficient activity (20,50 U,mg,1 total protein) for application in an enzyme membrane reactor (EMR) setting. Model-based experimental analysis of a set of enzyme assays clearly indicated that racemization of the model substrates D - or L -methionine could be accurately described by reversible Michaelis,Menten kinetics. The corresponding kinetic parameters were determined from progress curves for the entire suitable set of aqueous-organic mixtures (up to 60% methanol and 40% acetonitrile) that are eligible for an integrated process scheme. The resulting kinetic expression could be successfully applied to describe enzyme membrane reactor performance under a large variety of settings. Model-based calculations suggested that a methanol content of 10% and an acetonitrile content of 20% provide maximum productivity in EMR operations. However product concentrations were decreased in comparison to purely aqueous operation due to decreasing solubility of methionine with increasing organic solvent content. Finally, biocatalyst stability was investigated in different solvent compositions following a model-based approach. Buffer without organic content provided excellent stability at moderate temperatures (20,35°C) while addition of 20% acetonitrile or methanol drastically reduced the half-life of the racemase. Biotechnol. Bioeng. 2007; 98: 812,824. © 2007 Wiley Periodicals, Inc. [source] |