Moderate Expression (moderate + expression)

Distribution by Scientific Domains


Selected Abstracts


Changes in alternative brain-derived neurotrophic factor transcript expression in the developing human prefrontal cortex

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2009
Jenny Wong
Abstract In this study, we determined when and through which promoter brain-derived neurotrophic factor (BDNF) transcription is regulated during the protracted period of human frontal cortex development. Using quantitative real-time polymerase chain reaction, we examined the expression of the four most abundant alternative 5, exons of the BDNF gene (exons I, II, IV, and VI) in RNA extracted from the prefrontal cortex. We found that expression of transcripts I,IX and VI,IX was highest during infancy, whereas that of transcript II,IX was lowest just after birth, slowly increasing to reach a peak in toddlers. Transcript IV,IX was significantly upregulated within the first year of life, and was maintained at this level until school age. Quantification of BDNF protein revealed that levels followed a similar developmental pattern as transcript IV,IX. In situ hybridization of mRNA in cortical sections showed the highest expression in layers V and VI for all four BDNF transcripts, whereas moderate expression was observed in layers II and III. Interestingly, although low expression of BDNF was observed in cortical layer IV, this BDNF mRNA low-zone decreased in prominence with age and showed an increase in neuronal mRNA localization. In summary, our findings show that dynamic regulation of BDNF expression occurs through differential use of alternative promoters during the development of the human prefrontal cortex, particularly in the younger age groups, when the prefrontal cortex is more plastic. [source]


Detection of c-fos expression in benign and malignant musculoskeletal lesions

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2001
Jason S. Weisstein
The proto-oncogene c-fos has been implicated in the development of both benign and malignant lesions of bone. Although c-fos expression in such lesions has been well studied in transgenic mouse models, less is known about its role in human musculoskeletal pathology. To clarify this relationship, we used in situ hybridization to localize c-fos m-RNA transcripts in 26 fibrous lesions (eight cases of extra-abdominal fibromatosis and six cases each of fibrous dysplasia, fibrosarcoma, and malignant fibrous histiocytoma of bone) as well as six chondrosarcomas and eight conventional high grade osteosarcomas. We found detectable levels of c-fos expression in tissues from each type of lesion tested. Moreover, all fibrous lesions consistently demonstrated high levels of expression in a majority of cells in each lesion. Chondrosarcomas and osteosarcomas exhibited more heterogeneity in c-fos expression than fibrous tissues. Three of six chondrosarcomas showed moderate expression of c-fos while only one of six was considered high. Similarly, only three of eight osteosarcomas had high expression of c-fos. These findings indicate that the expression of c-fos may be important in the development of a broad range of fibrous lesions as well as in bone and cartilaginous tumors. Additionally, this is the first report, to our knowledge, of detectable c-fos m-RNA in human chondrosarcoma. © 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]


Involvement of breast cancer resistance protein expression on rheumatoid arthritis synovial tissue macrophages in resistance to methotrexate and leflunomide

ARTHRITIS & RHEUMATISM, Issue 3 2009
Joost W. van der Heijden
Objective To determine whether multidrug-resistance efflux transporters are expressed on immune effector cells in synovial tissue from patients with rheumatoid arthritis (RA) and compromise the efficacy of methotrexate (MTX) and leflunomide (LEF). Methods Synovial tissue biopsy samples obtained from RA patients before treatment and 4 months after starting treatment with MTX (n = 17) or LEF (n = 13) were examined by immunohistochemical staining and digital image analysis for the expression of the drug efflux transporters P-glycoprotein, multidrug resistance,associated protein 1 (MRP-1) through MRP-5, MRP-8, MRP-9, and breast cancer resistance protein (BCRP), and the relationship to clinical efficacy of MTX and LEF was assessed. Results BCRP expression was observed in all RA synovial biopsy samples, both pretreatment and posttreatment, but not in control noninflammatory synovial tissue samples from orthopedic patients. BCRP expression was found both in the intimal lining layer and on macrophages and endothelial cells in the synovial sublining. Total numbers of macrophages in RA patients decreased upon treatment; in biopsy samples with persistently high macrophage counts, 2-fold higher BCRP expression was observed. Furthermore, median BCRP expression was significantly increased (3-fold) in nonresponders to disease-modifying antirheumatic drugs (DMARDs) compared with responders to DMARDs (P = 0.048). Low expression of MRP-1 was found on synovial macrophages, along with moderate expression in T cell areas of synovial biopsy specimens from one-third of the RA patients. Conclusion These findings show that the drug resistance,related proteins BCRP and MRP-1 are expressed on inflammatory cells in RA synovial tissue. Since MTX is a substrate for both BCRP and MRP-1, and LEF is a high-affinity substrate for BCRP, these transporters may contribute to reduced therapeutic efficacy of these DMARDs. [source]


Modulation of tamoxifen sensitivity by antisense Bcl-2 and trastuzumab in breast carcinoma cells

CANCER, Issue 10 2005
Ph.D., Ryungsa Kim M.D.
Abstract BACKGROUND Because the overexpression of HER-2 and Bcl-2 is associated with resistance to tamoxifen (TAM), the authors examined the effect of antisense (AS) Bcl-2 on sensitivity to TAM compared with the effect of trastuzumab on sensitivity to TAM in breast carcinoma cell lines. METHODS Drug sensitivity was assessed in vitro using a [3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay with the breast carcinoma cell lines ZR-75-1, MDA-MB-453, and BT-474. AS Bcl-2 18-mer phosphorothioate oligonucleotide was applied. Apoptotic cell death was assessed with the terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end labeling method, and gene expression was evaluated with Western blot analysis. RESULTS The expression of Bcl-2 was identified in ZR-75-1 and BT-474 cells and, to a lesser extent, in MDA-MB-453 cells. Overexpression of HER-2 was identified in BT-474 cells, and moderate expression was identified in MDA-MB-453 and ZR-75-1 cells. Combination treatment with trastuzumab or AS Bcl-2 enhanced TAM sensitivity in ZR-75-1 cells, which showed 50% inhibitory concentration (IC50) values of 0.9 ,M (7.2-fold increase) and 0.5 ,M (13.0-fold), respectively. Combination treatment with trastuzumab or AS Bcl-2 slightly enhanced TAM sensitivity of BT-474 cells, with IC50 values of 3.0 ,M (1.3-fold) and 1.5 ,M (2.6-fold), respectively. The sensitivity of MDA-MB-453 cells to TAM was not enhanced by combination with trastuzumab or AS Bcl-2. Modulation of TAM sensitivity by AS Bcl-2 was superior to modulation by trastuzumab in HER-2-expressing and Bcl-2 -expressing breast carcinoma cells. Enhanced sensitivity in combination with AS Bcl-2 was associated with down-regulation of Bcl-2 and pAkt, which was correlated with the induction of Bax and caspase-3, leading to apoptosis. CONCLUSIONS AS Bcl-2 appeared to be superior to trastuzumab with respect to regulating the signal-transduction pathways involved in breast carcinoma cells. Cancer 2005. © 2005 American Cancer Society. [source]