Moderate Affinity (moderate + affinity)

Distribution by Scientific Domains


Selected Abstracts


Felbamate in Experimental Model of Status Epilepticus

EPILEPSIA, Issue 2 2000
Andrey M. Mazarati
Summary: Purpose: To examine the putative seizure-protective properties of felbarnate in an animal model of self-sustaining status epilepticus (SSSE). Methods: SSSE was induced by 30-min stimulation of the perforant path (PPS) through permanently implanted electrodes in free-running male adult Wistar rats. Felbarnate (FBM; 50, 100, and 200 mg/kg), dizepam (DZP; 10 mg/kg), or phenytoin (PHT; 50 mg/kg) were injected i.v. 10 min after SSSE induction. Electrographic manifestations of SSSE and the severity of SSSE-induced neuronal injury were analyzed. Results: Felbamate injected during the early stages of SSSE (10 min after the end of PPS), shortened the duration of seizures in a dose-dependent manner. Total time spent in seizures after FBM and 290 ± 251 min (50 mg/kg), 15.3 ± 9 min (100 mg/kg), and 7 ± 1 min (200 mg/kg), whereas control animals spent 410 ± 133 min seizing. This effect of FBM was stronger than that of DZP (10 mg/kg, 95 ± 22 min) and comparable to that of PHT (50 mg/kg, 6.3 ± 2.5 min). In the applied doses, FBM (200 mg/kg) was more effective than PHT (50 mg/kg) or DZP (10 mg/kg) in shortening seizure duration and decreasing spike frequency, when administered on the pleateau of SSSE (injection 40 min after the end of PPS). Anticonvulsant action of FBM was confirmed by milder neuronal injury compared with control animals. Conclusions: Felbamate, a clinically available AED with a moderate affinity for the glycine site of the NMDA receptor, displayed a potent seizure-protective effect in an animal model of SSSE. These results suggest that FBM might be useful when standard AEDs fail in the treatment of refractory cases of SE. [source]


Pharmacology of the Selective 5-HT1B/1D Agonist Frovatriptan

HEADACHE, Issue 2002
M.B. Comer BSc
Objective.,To determine the pharmacological profile of frovatriptan. Background.,Frovatriptan is a new 5-HT1B/1D agonist developed for the treatment of migraine. Methods.,Pharmacological studies were performed using in vitro and in vivo techniques. Results.,Radioligand-binding studies showed that frovatriptan has a high affinity for 5-HT1B and 5-HT1D receptors, and moderate affinity for 5-HT1A, 5-HT1F, and 5-HT7 receptors. In vitro, frovatriptan acts as a potent full agonist at human cloned 5-HT1B and 5-HT1D receptors, and as a moderately potent full agonist at 5-HT7 receptors. Studies of frovatriptan in isolated human arteries demonstrated a lower threshold for constriction of cerebral than coronary vasculature and a bell-shaped dose-response curve was apparent in the coronary arteries. In anesthetized dogs, frovatriptan administration produced no measurable effect on cardiac function or on blood pressure. Frovatriptan had no effects on coronary blood flow following transient coronary artery occlusion, whereas sumatriptan produced a prolonged and significant decrease in coronary blood flow. Conclusion.,The pharmacology of frovatriptan suggests that it should be an effective agent for the acute treatment of migraine, with a low potential for undesirable peripheral effects. [source]


Synthesis and biological evaluation of carbon-11-labeled acyclic and furo[2,3-d]pyrimidine derivatives of bicyclic nucleoside analogues (BCNAs) for structure,brain uptake relationship study of BCNA tracers

JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, Issue 3 2008
Satish K. Chitneni
Abstract We reported earlier on radiolabeled alkoxyphenyl bicyclic nucleoside analogues (BCNAs) as potential positron emission tomography (PET) reporter probes for imaging of varicella zoster virus thymidine kinase (VZV-tk) gene in vivo. Despite their favorable physicochemical properties, these tracers are not taken up in the brain in mice. In order to probe the role of the deoxyribose sugar moiety in blood-brain barrier (BBB) penetration of these molecules, we have synthesized and evaluated a carbon-11-labeled acyclic bicyclic nucleoside derivative ([11C]-10) where the 2,-deoxyribose sugar is replaced with a (2-hydroxyethoxy)methyl group and [11C]-12, which has no sugar moiety but a [11C]methyl group on the N-3 position of the pyrimidine ring. Methylation was achieved on the phenol ([11C]-10) or the N-3 position ([11C]-12) using [11C]methyl triflate (radiosynthesis). The (non-radioactive) acyclic O -methyl derivative 10 has rather poor affinity for the enzyme VZV-TK in vitro (IC50: 430,µM), compared with the moderate affinity of the BCNA-base N -methyl derivative 12 (IC50: 79,µM). In normal mice, none of the two tracers ([11C]-10 or [11C]-12) showed significant uptake in the brain, suggesting that compounds containing a furo[2,3- d]pyrimidine system do not cross the BBB. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Enantioseparation of nuarimol by affinity electrokinetic chromatography-partial filling technique using human serum albumin as chiral selector

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 18 2008
Maria Amparo Martínez-Gómez
Abstract The present paper deals with the enantiomeric separation of nuarimol enantiomers by affinity EKC-partial filling technique using HSA as chiral selector. Firstly, a study of nuarimol interactions with HSA by CE-frontal analysis was performed. The binding parameters obtained for the first site of interaction were n1 = 0.84; K1 = 9.7 ± 0.3×103 M,1 and the protein binding percentage of nuarimol at physiological concentration of HSA was 75.2 ± 0.2%. Due to the moderate affinity of nuarimol towards HSA the possibility of using this protein as chiral selector for the separation of nuarimol using the partial filling technique was evaluated. A multivariate optimization approach of the most critical experimental variables in enantioresolution, running pH, HSA concentration and plug length was carried out. Separation of nuarimol enantiomers was obtained under the following selected conditions: electrophoretic buffer composed of 50 mM Tris at pH 7.3; 160 ,M HSA solution applied at 50 mbar for 156 s as chiral selector; nuarimol solutions in the range of 2,8×10,4 M injected hydrodynamically at 30 mbar for 2 s and the electrophoretic runs performed at 30°C applying 15 kV voltage. Resolution, accuracy, reproducibility speed and cost of the proposed method make it suitable for quality control of the enantiomeric composition of nuarimol in formulations and for further toxicological studies. The results showed a different affinity between nuarimol enantiomers towards HSA. [source]


Alanine scan mutagenesis of the switch I domain of the Caulobacter crescentus CgtA protein reveals critical amino acids required for in vivo function

MOLECULAR MICROBIOLOGY, Issue 4 2001
B. Lin
The Caulobacter crescentus CgtA protein is a member of the Obg/GTP1 subfamily of monomeric GTP-binding proteins. In vitro, CgtA displays moderate affinity for both GDP and GTP and displays rapid exchange rate constants for either nucleotide, indicating that the guanine nucleotide-binding and exchange properties of CgtA are different from those of the well-characterized Ras-like GTP-binding proteins. The Obg/GTP1 proteins share sequence similarity along the putative effector-binding domain. In this study, we examined the functional consequences of altering amino acid residues within this conserved domain, and identified that T193 was critical for CgtA function. The in vitro binding, exchange and GTP hydrolysis of the T192A, T193A and T192AT193A mutant proteins was examined using fluorescent guanine nucleotide analogues (mant-GDP and mant-GTP). Substitution of either T192 and/or T193 for alanine modestly reduced binding to GDP and significantly reduced the binding affinity for GTP. Furthermore, the T193A mutant protein was more severely impaired for binding GTP than the T192A mutant. The T193A mutation appeared to account solely for the impaired GTP binding of the T192AT193A double mutation. This is the first report that demonstrates that a confirmed defect in guanine nucleotide binding and GTP hydrolysis of an Obg-like protein results in the lack of function in vivo. [source]


A structural basis for processivity

PROTEIN SCIENCE, Issue 9 2001
Wendy A. Breyer
Abstract The structures of a number of processive enzymes have been determined recently. These proteins remain attached to their polymeric substrates and may perform thousands of rounds of catalysis before dissociating. Based on the degree of enclosure of the substrate, the structures fall into two broad categories. In one group, the substrate is partially enclosed, while in the other class, enclosure is complete. In the latter case, enclosure is achieved by way of an asymmetric structure for some enzymes while others use a symmetrical toroid. In those cases where the protein completely encloses its polymeric substrate, the two are topologically linked and an immediate explanation for processivity is provided. In cases where there is only partial enclosure, the structural basis for processivity is less obvious. There are, for example, pairs of proteins that have quite similar structures but differ substantially in their processivity. It does appear, however, that the enzymes that are processive tend to be those that more completely enclose their substrates. In general terms, proteins that do not use topological restraint appear to achieve processivity by using a large interaction surface. This allows the enzyme to bind with moderate affinity at a multitude of adjacent sites distributed along its polymeric substrate. At the same time, the use of a large interaction surface minimizes the possibility that the enzyme might bind at a small number of sites with much higher affinity, which would interfere with sliding. Proteins that can both slide along a polymeric substrate, and, as well, recognize highly specific sites (e.g., some site-specific DNA-binding proteins) appear to undergo a conformational change between the cognate and noncognate-binding modes. [source]