Modelling Results (modelling + result)

Distribution by Scientific Domains


Selected Abstracts


Development and simulation studies of an unsteady state biofilter model for the treatment of cyclic air emissions of an ,-pinene gas stream

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 7 2005
Christina Dirk-Faitakis
Abstract This paper describes the development and simulation of an unsteady state biofilter model used to predict dynamic behaviour of cyclically-operated biofilters and compares it with experimental results obtained from three, parallel, bench-scale biofilters treating both periodically fluctuating concentrations and constant concentrations of an ,-pinene-laden gas stream. The dynamic model, using kinetic parameters estimated from the constant concentration biofilter, was able to predict the performance of cyclic biofilters operating at short cycle periods (ie, in the order of minutes and hours). Steady state kinetic data from a constant concentration biofilter can be used to predict unsteady state biofilter operation. At a 24 h cycle period, the dynamic model compared well with experimental results. For long cycle periods (ie, hours and days), removal efficiency decreased after periods of non-loading: the longer the period of non-loading, the poorer the biofilter's performance at the re-commencement of pollutant loading. At longer time scales the model did not effectively predict transient behaviour, as adsorption and changes in kinetic parameters were not accounted for. Modelling results showed that similar biofiltration performance for the cyclic and constant concentration biofiltration of ,-pinene is expected for biofilters operating solely in the first order kinetics regime. Poorer performance for cyclic biofilters following Monod kinetics spanning the entire kinetics range is expected as the cycle amplitude increases. The most important parameters affecting the performance of a cyclically-operated biofilter with short cycle periods are: amplitude of cyclic fluctuations, Cg, max/Cg, relative value of the half-saturation constant in the Monod expression, Ks, and effective diffusivity of ,-pinene in the biofilm, De. Copyright © 2005 Society of Chemical Industry [source]


One-dimensional thermal modelling of Acadian metamorphism in southern Vermont, USA

JOURNAL OF METAMORPHIC GEOLOGY, Issue 6 2000
T. R. Armstrong
One-dimensional thermal (1DT) modelling of an Acadian (Devonian) tectonothermal regime in southern Vermont, USA, used measured metamorphic pressures and temperatures and estimated metamorphic cooling ages based on published thermobarometric and geochronological studies to constrain thermal and tectonic input parameters. The area modelled lies within the Vermont Sequence of the Acadian orogen and includes: (i) a western domain containing garnet-grade pre-Silurian metasedimentary and metavolcanic rocks from the eastern flank of an Acadian composite dome structure (Rayponda,Sadawga Dome); and (ii) an eastern domain containing similar, but staurolite- or kyanite-grade, rocks from the western flank of a second dome structure (Athens Dome), approximately 10 km farther east. Using reasonable input parameters based on regional geological, petrological and geochronological constraints, the thermal modelling produced plausible P,T paths, and temperature,time (T ,t) and pressure,time (P,t) curves. Information extracted from P,T ,t modelling includes values of maximum temperature and pressure on the P,T paths, pressure at maximum temperature, predicted Ar closure ages for hornblende, muscovite and K-feldspar, and integrated exhumation and cooling rates for segments of the cooling history. The results from thermal modelling are consistent with independently obtained pressure, temperature and Ar cooling age data on regional metamorphism in southern Vermont. Modelling results provide some important bounding limits on the physical conditions during regional metamorphism, and indicate that the pressure contemporaneous with the attainment of peak temperature was probably as much as 2.5 kbar lower than the actual maximum pressure experienced by rocks along various particle paths. In addition, differences in peak metamorphic grade (garnet-grade versus staurolite-grade or kyanite-grade) and peak temperature for rocks initially loaded to similar crustal depths, differences in calculated exhumation rates, and differences in 40Ar/39Ar closure ages are likely to have been consequences of variations in the duration of isobaric heating (or ,crustal residence periods') and tectonic unroofing rates. Modelling results are consistent with a regional structural model that suggests west to east younging of specific Acadian deformational events, and therefore diachroneity of attainment of peak metamorphic conditions and subsequent 40Ar/39Ar closure during cooling. Modelling is consistent with the proposition that regional variations in timing and peak conditions of metamorphism are the result of the variable depths to which rocks were loaded by an eastward-thickening thrust-nappe pile rooted to the east (New Hampshire Sequence), as well as by diachronous structural processes within the lower plate rocks of the Vermont Sequence. [source]


HYDROCARBON SEEPAGE AND CARBONATE MOUND FORMATION: A BASIN MODELLING STUDY FROM THE PORCUPINE BASIN (OFFSHORE IRELAND)

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2005
J. Naeth
This study assesses whether the growth of deep water carbonate mounds on the continental slope of the north Atlantic may be associated with active hydrocarbon leakage. The carbonate mounds studied occur in two distinct areas of the Porcupine Basin, 200 km offshore Ireland, known as the Hovland-Magellan and the Belgica areas. To evaluate the possible link between hydrocarbon leakage and mound growth, we used two dimensional cross-section and map-based basin modelling. Geological information was derived from interpretation of five seismic lines across the province as well as the Connemara oilfield. Calibration data was available from the northern part of the study area and included vitrinite reflectance, temperature and apatite fission track data. Modelling results indicate that the main Jurassic source rocks are mature to overmature for hydrocarbon generation throughout the basin. Hydrocarbon generation and migration started in the Late Cretaceous. Based on our stratigraphic and lithologic model definitions, hydrocarbon migration is modelled to be mainly vertical, with only Aptian and Tertiary deltaic strata directing hydrocarbon flow laterally out of the basin. Gas chimneys observed in the Connemara field were reproduced using flow modelling and are related to leakage at the apices of rotated Jurassic fault blocks. The model predicts significant focussing of gas migration towards the Belgica mounds, where Cretaceous and Tertiary carrier layers pinch out. In the Hovland-Magellan area, no obvious focus of hydrocarbon flow was modelled from the 2D section, but drainage area analysis of Tertiary maps indicates a link between mound position and shallow Tertiary closures which may focus hydrocarbon flow towards the mounds. [source]


Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models

DIVERSITY AND DISTRIBUTIONS, Issue 2 2010
Francisca Alba-Sánchez
Abstract Aim, Quaternary palaeopalynological records collected throughout the Iberian Peninsula and species distribution models (SDMs) were integrated to gain a better understanding of the historical biogeography of the Iberian Abies species (i.e. Abies pinsapo and Abies alba). We hypothesize that SDMs and Abies palaeorecords are closely correlated, assuming a certain stasis in climatic and topographic ecological niche dimensions. In addition, the modelling results were used to assign the fossil records to A. alba or A. pinsapo, to identify environmental variables affecting their distribution, and to evaluate the ecological segregation between the two taxa. Location, The Iberian Peninsula. Methods, For the estimation of past Abies distributions, a hindcasting process was used. Abies pinsapo and A. alba were modelled individually, first calibrating the model for their current distributions in relation to the present climate, and then projecting it into the past,the last glacial maximum (LGM) and the Middle Holocene periods,in relation to palaeoclimate simulations. The resulting models were compared with Iberian-wide fossil pollen records to detect areas of overlap. Results, The overlap observed between past Abies refugia,inferred from fossil pollen records,and the SDMs helped to construct the Quaternary distribution of the Iberian Abies species. SDMs yielded two well-differentiated potential distributions: A. pinsapo throughout the Baetic mountain Range and A. alba along the Pyrenees and Cantabrian Range. These results propose that the two taxa remained isolated throughout the Quaternary, indicating a significant geographical and ecological segregation. In addition, no significant differences were detected comparing the three projections (present-day, Mid-Holocene and LGM), suggesting a relative climate stasis in the refuge areas during the Quaternary. Main conclusions, Our results confirm that SDM projections can provide a useful complement to palaeoecological studies, offering a less subjective and spatially explicit hypothesis concerning past geographic patterns of Iberian Abies species. The integration of ecological-niche characteristics from known occurrences of Abies species in conjunction with palaeoecological studies could constitute a suitable tool to define appropriate areas in which to focus proactive conservation strategies. [source]


Greenhouse gas buildup, sardines, submarine eruptions and the possibility of abrupt degradation of intense marine upwelling ecosystems

ECOLOGY LETTERS, Issue 11 2004
Andrew Bakun
Abstract Widespread hypoxia and massive eruptions of noxious, radiatively active gases currently characterize the world's strongest eastern ocean upwelling zone. Theory, modelling results and observations suggest that the world's coastal upwelling zones will undergo progressive intensification in response to greenhouse gas buildup. This presents the prospect of progressive development of similarly degraded marine ecosystems in additional regions and of a contributing feedback loop involving associated additions to the global buildup rate of greenhouse gases, resulting further increases in upwelling intensity, creation of additional sources of greenhouse gas emissions, and so on. Abundant sardine stocks might be a mitigating factor opposing the process. [source]


Hexaazamacrocycle Containing Pyridine and Its Dicopper Complex as Receptors for Dicarboxylate Anions

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 22 2005
Feng Li
Abstract The host,guest binding interactions of the hexaazamacrocycle [26]py2N4, in its tetraprotonated form H4[26]py2N44+ as well as in its dicopper(II) complex [Cu2([26]py2N4)(H2O)4]4+, with dicarboxylate anions of different stereoelectronicrequirements, such as oxalate (ox2,), malonate (mal2,), succinate (suc2,), fumarate (fu2,) and maleate (ma2,), were evaluated. The association constants were determined using potentiometric methods in aqueous solution, at 298.0 K and 0.10 mol·dm,3 KCl. These values for the tetraprotonated ditopic receptor with the dicarboxylate anions revealed that the main species in solution corresponds to the formation of {H4[26]py2N4(A)}2+ (pH , 4,9), A being the substrate anion. The values determined are not especially high, but the receptor exhibits selectivity for the malonate anion. The study of the cascade complexes revealed several species in solution, involving mononuclear and dinuclear complexes, mainly protonated and hydrolysed species, as well as the expected complexes [Cu2([26]py2N4)(A)(H2O)x]2+ or [Cu2([26]py2N4)(A)2(H2O)y]. Ox2, and mal2, form cascade complexes with only one anion, which will necessarily bridge the two copper atoms because of the symmetrical arrangement of the dinuclear complex. The two other studied anions, suc2, and ma2,, form species involving two substrate anions, although species with only one suc2, anion were also found. UV/Vis and EPR spectroscopy have shown that the dicopper complex can operate as a sensor to detect and quantitatively determine oxalate spectrophotometrically because of the red shift of the maximum of the visible band observed by addition of ox2, to an aqueous solution of the dinuclear copper complex. However the selectivity of [Cu2([26]py2N4)(H2O)4]4+ as a receptor for ox2, in the studied series is not sufficiently high to detect ox2, spectrophotometrically in the presence of the other anions. Molecular dynamics simulations indicated that the H4[26]py2N44+ receptor provides a large and flexible cavity to accommodate the studied anions. Molecular recognition is based in electrostatic interactions rather than in multiple hydrogen-bonding interactions acting cooperatively. By contrast, the [Cu2([26]py2N4)]4+ receptor has a well-shaped cavity with adequate size to uptake these anions as bridging ligands with formation of four Cu,O bonds. The ox2, anion is encapsulated within the cascade complex while the remaining anions are located above the N6 macrocyclic plane, suggesting a selective coordination behaviour of this receptor. In spite of our molecular simulation being carried out in gas phase, the modelling results are consistent with the solution studies. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008
Richardson N. Leăo
Abstract Principal cells of the medial nucleus of the trapezoid body (MNTB) are simple round neurons that receive a large excitatory synapse (the calyx of Held) and many small inhibitory synapses on the soma. Strangely, these neurons also possess one or two short tufted dendrites, whose function is unknown. Here we assess the role of these MNTB cell dendrites using patch-clamp recordings, imaging and immunohistochemistry techniques. Using outside-out patches and immunohistochemistry, we demonstrate the presence of dendritic Na+ channels. Current-clamp recordings show that tetrodotoxin applied onto dendrites impairs action potential (AP) firing. Using Na+ imaging, we show that the dendrite may serve to maintain AP amplitudes during high-frequency firing, as Na+ clearance in dendritic compartments is faster than axonal compartments. Prolonged high-frequency firing can diminish Na+ gradients in the axon while the dendritic gradient remains closer to resting conditions; therefore, the dendrite can provide additional inward current during prolonged firing. Using electron microscopy, we demonstrate that there are small excitatory synaptic boutons on dendrites. Multi-compartment MNTB cell simulations show that, with an active dendrite, dendritic excitatory postsynaptic currents (EPSCs) elicit delayed APs compared with calyceal EPSCs. Together with high- and low-threshold voltage-gated K+ currents, we suggest that the function of the MNTB dendrite is to improve high-fidelity firing, and our modelling results indicate that an active dendrite could contribute to a ,dual' firing mode for MNTB cells (an instantaneous response to calyceal inputs and a delayed response to non-calyceal dendritic excitatory postsynaptic potentials). [source]


Modelling patterned ground distribution in Finnish Lapland: an integration of topographical, ground and remote sensing information

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2006
Jan Hjort
Abstract New data technologies and modelling methods have gained more attention in the field of periglacial geomorphology during the last decade. In this paper we present a new modelling approach that integrates topographical, ground and remote sensing information in predictive geomorphological mapping using generalized additive modelling (GAM). First, we explored the roles of different environmental variable groups in determining the occurrence of non-sorted and sorted patterned ground in a fell region of 100 km2 at the resolution of 1 ha in northern Finland. Second, we compared the predictive accuracy of ground-topography- and remote-sensing-based models. The results indicate that non-sorted patterned ground is more common at lower altitudes where the ground moisture and vegetation abundance is relatively high, whereas sorted patterned ground is dominant at higher altitudes with relatively high slope angle and sparse vegetation cover. All modelling results were from good to excellent in model evaluation data using the area under the curve (AUC) values, derived from receiver operating characteristic (ROC) plots. Generally, models built with remotely sensed data were better than ground-topography-based models and combination of all environmental variables improved the predictive ability of the models. This paper confirms the potential utility of remote sensing information for modelling patterned ground distribution in subarctic landscapes. [source]


Near-lithostatic pore pressure at seismogenic depths: a thermoporoelastic model

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2006
Francesca Zencher
SUMMARY A model is presented for pore pressure migration through a transition layer separating a meteoric aquifer at hydrostatic pressure from a deeper reservoir at lithostatic pressure. This configuration is thought to be pertinent to the South Iceland seismic zone (SISZ) and to other tectonically active regions of recent volcanism, where volatiles are continuously released by ascending magma below the brittle,ductile transition. Poroelastic parameters are computed for basaltic rock. The model is 1-D, the fluid viscosity is temperature dependent and rock permeability is assumed to be pressure dependent according to a dislocation model of a fractured medium. Environment conditions are considered, pertinent to basalt saturated with water at shallow depth (case I) and at mid-crustal depth (case II). If the intrinsic permeability of the rock is high, no significant effects are observed in the pressure field but advective heat transfer shifts the brittle,ductile transition to shallower depths. If the intrinsic permeability is low, the pressure-dependent permeability can propagate near-lithostatic pore pressures throughout most of the transition layer, while the temperature is practically unaffected by advective contributions so that the rock in the transition layer remains in brittle condition. Geometrical parameters characterizing the fracture distribution are important in determining the effective permeability: in particular, if an interconnected system of fractures develops within the transition layer, the effective permeability may increase by several orders of magnitude and near-lithostatic pore pressure propagates upwards. These modelling results have important bearings on our understanding of seismogenic processes in geothermal areas and are consistent with several geophysical observations in the SISZ, in connection with the two 2000 June M= 6.5 earthquakes, including: (i) fluid pressure pulses in deep wells, (ii) low resistivity at the base of the seismogenic layer, (iii) low VP/VS ratio and time-dependent seismic tomography, (iv) heterogeneity of focal mechanisms, (v) shear wave splitting, (vi) high b -value of deep foreshocks, (vii) triggered seismicity and (viii) Radon anomalies. [source]


Electromagnetic fields in a steel-cased borehole

GEOPHYSICAL PROSPECTING, Issue 1 2005
Ki Ha Lee
ABSTRACT The development of an electromagnetic numerical modelling scheme for a magnetic dipole in an arbitrary casing segment in an inhomogeneous conductivity background has been difficult, due to the very high electrical conductivity and magnetic permeability contrasts between the steel casing and the background medium. To investigate the effect of steel casing efficiently, we have developed an accurate but simple finite-element modelling scheme to simulate electromagnetic fields in a medium of cylindrically symmetric conductivity structures. In order to preserve the cylindrical symmetry in the resulting electromagnetic fields, a horizontal loop current source is used throughout. One of the main advantages of the approach is that the problem is scalar when formulated using the azimuthal electric field, even if the casing is both electrically conductive and magnetically permeable. Field calculations have been made inside the cased borehole as well as in another borehole which is not cased. Careful analyses of the numerical modelling results indicate that the anomaly observed in a cross-borehole configuration is sensitive enough to be used for tomographic imaging. [source]


Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability

HYDROLOGICAL PROCESSES, Issue 5 2006
Wenzhi Cao
Abstract Many methods developed for calibration and validation of physically based distributed hydrological models are time consuming and computationally intensive. Only a small set of input parameters can be optimized, and the optimization often results in unrealistic values. In this study we adopted a multi-variable and multi-site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Motueka catchment, making use of extensive field measurements. Not only were a number of hydrological processes (model components) in a catchment evaluated, but also a number of subcatchments were used in the calibration. The internal variables used were PET, annual water yield, daily streamflow, baseflow, and soil moisture. The study was conducted using an 11-year historical flow record (1990,2000); 1990,94 was used for calibration and 1995,2000 for validation. SWAT generally predicted well the PET, water yield and daily streamflow. The predicted daily streamflow matched the observed values, with a Nash,Sutcliffe coefficient of 0·78 during calibration and 0·72 during validation. However, values for subcatchments ranged from 0·31 to 0·67 during calibration, and 0·36 to 0·52 during validation. The predicted soil moisture remained wet compared with the measurement. About 50% of the extra soil water storage predicted by the model can be ascribed to overprediction of precipitation; the remaining 50% discrepancy was likely to be a result of poor representation of soil properties. Hydrological compensations in the modelling results are derived from water balances in the various pathways and storage (evaporation, streamflow, surface runoff, soil moisture and groundwater) and the contributions to streamflow from different geographic areas (hill slopes, variable source areas, sub-basins, and subcatchments). The use of an integrated multi-variable and multi-site method improved the model calibration and validation and highlighted the areas and hydrological processes requiring greater calibration effort. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Modification of growing-season surface temperature records in the northern great plains due to land-use transformation: verification of modelling results and implication for global climate change

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 3 2004
Rezaul Mahmood
Abstract Land-use and land-cover change can modify near-surface atmospheric condition. Mesoscale modelling studies have shown that modification in land use affects near-surface soil moisture storage and energy balance. Such a study in the Great Plains showed that changes in land use from natural grass to irrigated agriculture enhanced soil water storage in the root zone and increased latent energy flux. This increase in latent energy flux would correspond to a decrease in sensible heat flux and, therefore, modify near-surface temperature records. To verify this deduction, we have investigated the changes in the historical near-surface temperature records in Nebraska, USA. We have analysed the long-term mean monthly maximum, minimum, and monthly mean air temperature data from five irrigated and five non-irrigated sites. The cooperative weather observation (coop) network is the source of the data. We have found that there is a clear trend in decreasing mean maximum and average temperature data for irrigated sites. For example, York, NE, reports that the mean maximum growing season temperature is decreasing at the rate ,0.01°C year,1. The results from non-irrigated sites indicated an increasing trend for the same parameters. The data from Halsey, NE, indicate a +0.01°C year,1 increase in this century. In addition, we have conducted similar analyses of temperature data for the National Climatic Data Center's Historical Climatic Network data set for the same locations. The results are similar to that obtained with the coop data set. Further investigation of dew-point temperature records for irrigated and non-irrigated sites also show an increasing and decreasing trend respectively. Therefore, we conclude that the land-use change in the Great Plains has modified near-surface temperature records. Copyright © 2004 Royal Meteorological Society [source]


Photocrosslinking in Ruthenium-Labelled Duplex Oligonucleotides

CHEMBIOCHEM, Issue 2-3 2003
O. Lentzen
Abstract The formation of a photoadduct between a [Ru(1,4,5,8-tetraazaphenanthrene)24,7-diphenylphenanthroline]2+complex chemically attached to a synthetic oligonucleotide, and a guanine moiety in a complementary targeted single-stranded DNA molecule was studied for ten 17-mer duplexes by denaturing gel electrophoresis. This photoadduct formation leads to photocrosslinking of the two strands. The percentage quenching of luminescence of the complex by electron transfer was compared to the resulting yield of photocrosslinked product. This yield does not only depend on the ionisation potential of the guanine bases, which are electron donors, but also on other factors, such as the position of the guanine bases as compared to the site of attachment of the complex. The photocrosslinking yield is higher when the guanine moieties are towards the 3, end on the complementary strand as compared to the tethering site. Computer modelling results are in agreement with this preference for the 3, side for the photoreaction. Interestingly, the photocrosslink is not alkali labile. Moreover, a type III exonuclease enzyme is blocked at the position of photocrosslinking. [source]