Model Potential (model + potential)

Distribution by Scientific Domains


Selected Abstracts


Resonances and pseudoresonances in a potential with attractive coulomb tail: A study using analytic-continuation techniques

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 2 2003
Imke B. Müller
Abstract The performance of the complex absorbing potential (CAP) and the complex scaling (CS) methods in the detection and calculation of complex Siegert energies is studied using a 1-D long-range attractive model potential. This potential is constructed to mimic molecular properties, in particular an attractive Coulombic term, to allow one to draw conclusions on molecular ab initio studies. Analyzing the spectrum of the model potential, one compact bound state embedded in the manifold of Rydberg states is found that shows artificial resonance characteristics when applying the CAP and the CS methods. This pseudoresonance problem is less pronounced in the calculation using the CS method than in that using the CAP method. Despite this deficiency, the CAP method is shown to possess advantages over CS when dealing with physical resonances under conditions that simulate the application of standard basis sets in ab initio calculations. The accuracy of the Siegert energy is shown to be maintained when applying a subspace projection technique to the CAP method. This technique reduces the computational demand significantly and leads to an important improvement of the CAP method, which should be of particular significance in molecular applications. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003 [source]


Fitting complex potential energy surfaces to simple model potentials: Application of the simplex-annealing method

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 6 2005
Raúl A. Bustos Marún
Abstract A stochastic method of optimization, which combines simulated annealing with simplex, is implemented to fit the parameters of a simple model potential. The main characteristic of the method is that it explores the whole space of the parameters of the model potential, and therefore it is very efficient in locating the global minimum of the cost function, in addition to being independent of the initial guess of the parameters. The method is employed to fit the complex intermolecular potential energy surface of the dimer of water, using as a reference the spectroscopic quality anisotropic site,site potential of Feller et al. The simple model potential chosen for its reparameterization is the MCY model potential of Clementi et al. The quality of the fit is assessed by comparing the geometry of the minimum, the harmonic frequencies, and the second virial coefficients of the parameterized potential with the reference one. Finally, to prove more rigorously the robustness of this method, it is compared with standard nonstochastic methods of optimization. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 523,531, 2005 [source]


Role of resonances in building cross sections: Comparison between the Mittag,Leffler and the T-matrix Green function expansion approaches

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 6 2007
Ksenia Shilyaeva
Abstract Peaks in collision cross sections are often interpreted as resonances. The complex dilation method, as well as other methods relying on analytic continuation of the scattering formalism, can be used to clarify whether these structures are true resonances in the sense that they are poles of the S-matrix and the associated Green function. The performance of the Mittag,Leffler expansion and T-matrix Green function expansion methods are formally and computationally compared. The two methods are applied to two model potentials. Eigenenergies, s -wave residues, and cross sections are computed with both methods. The resonance contributions to the cross sections are further analyzed by removing the residue contributions from the Mittag,Leffler and Green function expansion sums, respectively. It is suggested that the contribution of a resonance to a cross section should be defined through its S-matrix residue. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source]


Fitting complex potential energy surfaces to simple model potentials: Application of the simplex-annealing method

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 6 2005
Raúl A. Bustos Marún
Abstract A stochastic method of optimization, which combines simulated annealing with simplex, is implemented to fit the parameters of a simple model potential. The main characteristic of the method is that it explores the whole space of the parameters of the model potential, and therefore it is very efficient in locating the global minimum of the cost function, in addition to being independent of the initial guess of the parameters. The method is employed to fit the complex intermolecular potential energy surface of the dimer of water, using as a reference the spectroscopic quality anisotropic site,site potential of Feller et al. The simple model potential chosen for its reparameterization is the MCY model potential of Clementi et al. The quality of the fit is assessed by comparing the geometry of the minimum, the harmonic frequencies, and the second virial coefficients of the parameterized potential with the reference one. Finally, to prove more rigorously the robustness of this method, it is compared with standard nonstochastic methods of optimization. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 523,531, 2005 [source]


Experimental and predicted crystal structures of Pigment Red 168 and other dihalogenated anthanthrones

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 5 2010
Martin U. Schmidt
The crystal structures of 4,10-dibromo-anthanthrone (Pigment Red 168; 4,10-dibromo-dibenzo[def,mno]chrysene-6,12-dione), 4,10-dichloro- and 4,10-diiodo-anthanthrone have been determined by single-crystal X-ray analyses. The dibromo and diiodo derivatives crystallize in P21/c, Z = 2, the dichloro derivative in , Z = 1. The molecular structures are almost identical and the unit-cell parameters show some similarities for all three compounds, but the crystal structures are neither isotypic to another nor to the unsubstituted anthanthrone, which crystallizes in P21/c, Z = 8. In order to explain why the four anthanthrone derivatives have four different crystal structures, lattice-energy minimizations were performed using anisotropic atom,atom model potentials as well as using the semi-classical density sums (SCDS-Pixel) approach. The calculations showed the crystal structures of the dichloro and the diiodo derivatives to be the most stable ones for the corresponding compound; whereas for dibromo-anthanthrone the calculations suggest that the dichloro and diiodo structure types should be more stable than the experimentally observed structure. An experimental search for new polymorphs of dibromo-anthanthrone was carried out, but the experiments were hampered by the remarkable insolubility of the compound. A metastable nanocrystalline second polymorph of the dibromo derivative does exist, but it is not isostructural to the dichloro or diiodo compound. In order to determine the crystal structure of this phase, crystal structure predictions were performed in various space groups, using anisotropic atom,atom potentials. For all low-energy structures, X-ray powder patterns were calculated and compared with the experimental diagram, which consisted of a few broad lines only. It turned out that the crystallinity of this phase was not sufficient to determine which of the calculated structures corresponds to the actual structure of this nanocrystalline polymorph. [source]