Home About us Contact | |||
Model Equations (model + equation)
Selected AbstractsA Novel Radial-Flow, Spherical-Bed Reactor Concept for Methanol Synthesis in the Presence of Catalyst DeactivationCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 11 2008R. Rahimpour Abstract A radial-flow, spherical-bed reactor concept for methanol synthesis in the presence of catalyst deactivation, has been proposed. This reactor configuration visualizes the concentration and temperature distribution inside a radial-flow packed bed with a novel design for improving reactor performance with lower pressure drop. The dynamic simulation of spherical multi-stage reactors has been studied in the presence of long-term catalyst deactivation. Model equations were solved by the orthogonal collocation method. The performance of the spherical multi-stage reactors was compared with a conventional single-type tubular reactor. The results show that for this case study and with similar reactor specifications and operating conditions, the two-stage spherical reactor is better than other alternatives such as single-stage spherical, three-stage spherical and conventional tubular reactors. By increasing the number of stages of a spherical reactor, one increases the quality of production and decreases the quantity of production. [source] High-order filtering for control volume flow simulationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 7 2001G. De Stefano Abstract A general methodology is presented in order to obtain a hierarchy of high-order filter functions, starting from the standard top-hat filter, naturally linked to control volumes flow simulations. The goal is to have a new filtered variable better represented in its high resolved wavenumber components by using a suitable deconvolution. The proposed formulation is applied to the integral momentum equation, that is the evolution equation for the top-hat filtered variable, by performing a spatial reconstruction based on the approximate inversion of the averaging operator. A theoretical analysis for the Burgers' model equation is presented, demonstrating that the local de-averaging is an effective tool to obtain a higher-order accuracy. It is also shown that the subgrid-scale term, to be modeled in the deconvolved balance equation, has a smaller absolute importance in the resolved wavenumber range for increasing deconvolution order. A numerical analysis of the procedure is presented, based on high-order upwind and central fluxes reconstruction, leading to congruent control volume schemes. Finally, the features of the present high-order conservative formulation are tested in the numerical simulation of a sample turbulent flow: the flow behind a backward-facing step. Copyright © 2001 John Wiley & Sons, Ltd. [source] Controlling coverage of D-optimal onion designs and selectionsJOURNAL OF CHEMOMETRICS, Issue 12 2004Ing-Marie Olsson Abstract Statistical molecular design (SMD) is a powerful approach for selection of compound sets in medicinal chemistry and quantitative structure,activity relationships (QSARs) as well as other areas. Two techniques often used in SMD are space-filling and D-optimal designs. Both on occasions lead to unwanted redundancy and replication. To remedy such shortcomings, a generalization of D-optimal selection was recently developed. This new method divides the compound candidate set into a number of subsets (,layers' or ,shells'), and a D-optimal selection is made from each layer. This improves the possibility to select representative molecular structures throughout any property space independently of requested sample size. This is important in complex situations where any given model is unlikely to be valid over the whole investigated domain of experimental conditions. The number of selected molecules can be controlled by varying the number of subsets or by altering the complexity of the model equation in each layer and/or the dependency of previous layers. The new method, called D-optimal onion design (DOOD), will allow the user to choose the model equation complexity independently of sample size while still avoiding unwarranted redundancy. The focus of the present work is algorithmic improvements of DOOD in comparison with classical D-optimal design. As illustrations, extended DOODs have been generated for two applications by in-house programming, including some modifications of the D-optimal algorithm. The performances of the investigated approaches are expected to differ depending on the number of principal properties of the compounds in the design, sample sizes and the investigated model, i.e. the aim of the design. QSAR models have been generated from the selected compound sets, and root mean squared error of prediction (RMSEP) values have been used as measures of performance of the different designs. Copyright © 2005 John Wiley & Sons, Ltd. [source] Modelling of air drying of Hac,haliloglu-type apricotsJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 2 2006Hakan Okyay Menges Abstract In this study a laboratory dryer was used for the thin layer drying of sulfured and non-sulfured apricots. The moisture ratio values throughout the drying process were calculated by 14 different mathematical models, namely Newton, Page, modified Page, modified Page-II, Henderson and Pabis, logarithmic, two-term, two-term exponential, Wang and Singh, Thompson, diffusion approximation, modified Henderson and Papis, Verma et al. and Midilli et al. models. Root mean square error, reduced chi-square, mean bias error, adjusted R -square and modelling efficiency were used as statistical parameters to determine the most suitable model among them. According to the results, the Page model was chosen to explain the thin layer drying behaviour of sulfured and non-sulfured apricots. The effects of drying air temperature (T) and velocity (V) on the constants and coefficients of the best moisture ratio model were determined by multiple regression analysis. The moisture ratio (MR) could be predicted by the Page model equation MR = exp(,ktn) with constants and coefficients k = 0.470893 + 0.078775V and n = 0.017786 exp(0.051935T) for sulfured apricots and k = 4.578252 + 1.144643T and n = 0.888040 + 0.145559V for non-sulfured apricots. It is possible to predict the moisture content of the product with the generalised Page model incorporating the effects of drying air temperature and velocity on the model constants and coefficients in the ranges T = 70,80 °C and V = 1,3 m s,1. This developed model showed acceptable agreement with the experimental results, explained the drying behaviour of the product and could also be used for engineering applications. Copyright © 2005 Society of Chemical Industry [source] A New Group Contribution Method based on Equation of State Parameters to Evaluate the Critical Properties of Simple and Complex MoleculesTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2006José O. Valderrama Abstract A new group contribution method to evaluate the critical properties (temperature, pressure and volume) is presented and applied to estimate the critical properties of biomolecules. Similar to other group contribution methods, the one proposed here divides the molecule into conveniently defined groups and evaluates the properties as the sum of the different contributions according to a specified model equation for each of the properties. The proposed method consists of a one-step calculation that uses simple model equations and does not require additional data besides the knowledge of the structure of the molecule, except for isomers. For these substances the normal boiling temperature, the molecular mass and the number of atoms in the molecule are used to distinguish among isomers. The method is applicable to high molecular weight compounds, as most biomolecules and large molecules present in natural products. On présente une nouvelle méthode de contribution de groupe pour évaluer les propriétés critiques (température, pression et volume) de biomolécules. Comme dans le cas d'autres méthodes de contribution de groupe, celle qu'on présente ici divise la molécule en groupes définis de manière pratique et évalue les propriétés comme la somme des différentes contributions selon une équation de modèle spécifique pour chacune des propriétés. La méthode proposée consiste en un calcul en une étape qui utilise des équations de modèle simple et, excepté pour les isomères, ne requiert pas de données supplémentaires hormis la structure de la molécule. Pour ces substances, on utilise la température d'ébullition normale, la masse moléculaire et le nombre d'atomes dans la molécule pour distinguer entre les isomères. La méthode est applicable à des composés de poids moléculaire élevé, comme la plupart des biomolécules et des molécules larges présentes dans les produits naturels. [source] Presheath in Fully Ionized Collisional Plasma in a Magnetic FieldCONTRIBUTIONS TO PLASMA PHYSICS, Issue 7 2005B. Alterkop Abstract The quasineutral presheath layer at the boundary of fully ionized, collisional, and magnetized plasma with an ambipolar flow to an adjacent absorbing wall was analyzed using a two fluid magneto-hydrodynamic model. The plasma is magnetized by a uniform magnetic field B, imposed parallel to the wall. The analysis did not assume that the dependence of the particle density on the electric potential in the presheath is according to the Boltzmann equilibrium, and the dependence of the mean collision time , on the varying plasma density within the presheath was not neglected. Based on the model equations, algebraic expressions were derived for the dependence of the plasma density, electron and ion velocities, and the electrostatic potential on the position within the presheath. The solutions of the model equations depended on two parameters: Hall parameter (, ), and the ratio (, ), where , = ZTe /(ZTe + Ti ), and Te , Ti and Z are the electron and ion temperatures and ionicity, respectively. The characteristic scale of the presheath extension is several times ri /, , where ri is the ion radius at the ion sound velocity. The electric potential could have a non monotonic distribution in the presheath. The ions are accelerated to the Bohm velocity (sound velocity) in the presheath mainly near the presheath-sheath boundary, in a layer of thickness ,ri /, . The electric field accelerates the ions in the whole presheath if their velocity in the wall direction exceeds their thermal velocity. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Assessing a numerical cellular braided-stream model with a physical modelEARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2005Andrea B. Doeschl-Wilson Abstract A. B. Murray and C. Paola (1994, Nature, vol. 371, pp. 54,57; 1997, Earth Surface Processes and Landforms, vol. 22, pp. 1001,1025) proposed a cellular model for braided river dynamics as an exploratory device for investigating the conditions necessary for the occurrence of braiding. The model reproduces a number of the general morphological and dynamic features of braided rivers in a simplified form. Here we test the representation of braided channel morphodynamics in the Murray,Paola model against the known characteristics (mainly from a sequence of high resolution digital elevation models) of a physical model of a braided stream. The overall aim is to further the goals of the exploratory modelling approach by first investigating the capabilities and limitations of the existing model and then by proposing modifications and alternative approaches to modelling of the essential features of braiding. The model confirms the general inferences of Murray and Paola (1997) about model performance. However, the modelled evolution shows little resemblance to the real evolution of the small-scale laboratory river, although this depends to some extent on the coarseness of the grid used in the model relative to the scale of the topography. The model does not reproduce the bar-scale topography and dynamics even when the grid scale and amplitude of topography are adapted to be equivalent to the original Murray,Paola results. Strong dependence of the modelled processes on local bed slopes and the tendency for the model to adopt its own intrinsic scale, rather than adapt to the scale of the pre-existing topography, appear to be the main causes of the differences between numerical model results and the physical model morphology and dynamics. The model performance can be improved by modification of the model equations to more closely represent the water surface but as an exploratory approach hierarchical modelling promises greater success in overcoming the identified shortcomings. Copyright © 2005 John Wiley & Sons, Ltd. [source] A Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel CellsFUEL CELLS, Issue 1-2 2004K.Z. Yao Abstract This paper presents a review of the mathematical modeling of two types of polymer electrolyte membrane fuel cells: hydrogen fuel cells and direct methanol fuel cells. Models of single cells are described as well as models of entire fuel cell stacks. Methods for obtaining model parameters are briefly summarized, as well as the numerical techniques used to solve the model equations. Effective models have been developed to describe the fundamental electrochemical and transport phenomena occurring in the diffusion layers, catalyst layers, and membrane. More research is required to develop models that are validated using experimental data, and models that can account for complex two-phase flows of liquids and gases. [source] Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observationsGLOBAL CHANGE BIOLOGY, Issue 2 2005Bobby H. Braswell Abstract We performed a synthetic analysis of Harvard Forest net ecosystem exchange of CO2 (NEE) time series and a simple ecosystem carbon flux model, the simplified Photosynthesis and Evapo-Transpiration model (SIPNET). SIPNET runs at a half-daily time step, and has two vegetation carbon pools, a single aggregated soil carbon pool, and a simple soil moisture sub-model. We used a stochastic Bayesian parameter estimation technique that provided posterior distributions of the model parameters, conditioned on the observed fluxes and the model equations. In this analysis, we estimated the values of all quantities that govern model behavior, including both rate constants and initial conditions for carbon pools. The purpose of this analysis was not to calibrate the model to make predictions about future fluxes but rather to understand how much information about process controls can be derived directly from the NEE observations. A wavelet decomposition enabled us to assess model performance at multiple time scales from diurnal to decadal. The model parameters are most highly constrained by eddy flux data at daily to seasonal time scales, suggesting that this approach is not useful for calculating annual integrals. However, the ability of the model to fit both the diurnal and seasonal variability patterns in the data simultaneously, using the same parameter set, indicates the effectiveness of this parameter estimation method. Our results quantify the extent to which the eddy covariance data contain information about the ecosystem process parameters represented in the model, and suggest several next steps in model development and observations for improved synthesis of models with flux observations. [source] A linearized implicit pseudo-spectral method for some model equations: the regularized long wave equationsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 11 2003K. Djidjeli Abstract An efficient numerical method is developed for the numerical solution of non-linear wave equations typified by the regularized long wave equation (RLW) and its generalization (GRLW). The method developed uses a pseudo-spectral (Fourier transform) treatment of the space dependence together with a linearized implicit scheme in time. =10pt An important advantage to be gained from the use of this method, is the ability to vary the mesh length, thereby reducing the computational time. Using a linearized stability analysis, it is shown that the proposed method is unconditionally stable. The method is second order in time and all-order in space. The method presented here is for the RLW equation and its generalized form, but it can be implemented to a broad class of non-linear long wave equations (Equation (2)), with obvious changes in the various formulae. Test problems, including the simulation of a single soliton and interaction of solitary waves, are used to validate the method, which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. Copyright © 2003 John Wiley & Sons, Ltd. [source] Numerical simulation of turbulent impinging jet on a rotating diskINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2007A. Abdel-Fattah, Article first published online: 25 OCT 200 Abstract The calculations of quasi-three-dimensional momentum equations were carried out to study the influence of wall rotation on the characteristics of an impinging jet. The pressure coefficient, the mean velocity distributions and the components of Reynolds stress are calculated. The flow is assumed to be steady, incompressible and turbulent. The finite volume scheme is used to solve the continuity equation, momentum equations and k,, model equations. The flow characteristics were studied by varying rotation speed , for 0,,,167.6 rad/s, the distance from nozzle to disk (H/d) was (3, 5, 8 and 10) and the Reynolds number Re base on VJ and d was 1.45 × 104. The results showed that, the radial velocity and turbulence intensity increase by increasing the rotation speed and decrease in the impingement zone as nozzle to disk spacing increases. When the centrifugal force increases, the radial normal stresses and shear stresses increase. The location of maximum radial velocity decreases as the local velocity ratio (,) increases. The pressure coefficient depends on the centrifugal force and it decreases as the distance from nozzle to plate increases. In impingement zone and radial wall jet, the spread of flow increases as the angular velocity decreases The numerical results give good agreement with the experiment data of Minagawa and Obi (Int. J. of Heat and Fluid Flow 2004; 25:759,766). Copyright © 2006 John Wiley & Sons, Ltd. [source] On coupling the Reynolds-averaged Navier,Stokes equations with two-equation turbulence model equationsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 2 2006Seungsoo Lee Abstract Two methods for coupling the Reynolds-averaged Navier,Stokes equations with the q,, turbulence model equations on structured grid systems have been studied; namely a loosely coupled method and a strongly coupled method. The loosely coupled method first solves the Navier,Stokes equations with the turbulent viscosity fixed. In a subsequent step, the turbulence model equations are solved with all flow quantities fixed. On the other hand, the strongly coupled method solves the Reynolds-averaged Navier,Stokes equations and the turbulence model equations simultaneously. In this paper, numerical stabilities of both methods in conjunction with the approximated factorization-alternative direction implicit method are analysed. The effect of the turbulent kinetic energy terms in the governing equations on the convergence characteristics is also studied. The performance of the two methods is compared for several two- and three-dimensional problems. Copyright © 2005 John Wiley & Sons, Ltd. [source] Simulation of two-dimensional turbulent flows in a rotating annulusINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 3 2004Brian D. Storey Abstract Rotating water tank experiments have been used to study fundamental processes of atmospheric and geophysical turbulence in a controlled laboratory setting. When these tanks are undergoing strong rotation the forced turbulent flow becomes highly two dimensional along the axis of rotation. An efficient numerical method has been developed for simulating the forced quasi-geostrophic equations in an annular geometry to model current laboratory experiments. The algorithm employs a spectral method with Fourier series and Chebyshev polynomials as basis functions. The algorithm has been implemented on a parallel architecture to allow modelling of a wide range of spatial scales over long integration times. This paper describes the derivation of the model equations, numerical method, testing and performance of the algorithm. Results provide reasonable agreement with the experimental data, indicating that such computations can be used as a predictive tool to design future experiments. Copyright © 2004 John Wiley & Sons, Ltd. [source] Mixture model equations for marker-assisted genetic evaluationJOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 4 2005Y. Liu Summary Marker-assisted genetic evaluation needs to infer genotypes at quantitative trait loci (QTL) based on the information of linked markers. As the inference usually provides the probability distribution of QTL genotypes rather than a specific genotype, marker-assisted genetic evaluation is characterized by the mixture model because of the uncertainty of QTL genotypes. It is, therefore, necessary to develop a statistical procedure useful for mixture model analyses. In this study, a set of mixture model equations was derived based on the normal mixture model and the EM algorithm for evaluating linear models with uncertain independent variables. The derived equations can be seen as an extension of Henderson's mixed model equations to mixture models and provide a general framework to deal with the issues of uncertain incidence matrices in linear models. The mixture model equations were applied to marker-assisted genetic evaluation with different parameterizations of QTL effects. A sire-QTL-effect model and a founder-QTL-effect model were used to illustrate the application of the mixture model equations. The potential advantages of the mixture model equations for marker-assisted genetic evaluation were discussed. The mixed-effect mixture model equations are flexible in modelling QTL effects and show desirable properties in estimating QTL effects, compared with Henderson's mixed model equations. [source] Top down preselection using marker assisted estimates of breeding values in dairy cattleJOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 5 2004Jörn Bennewitz Summary Top down preselection of young bulls before entering progeny testing has been proposed as a practicable form of marker-assisted selection (MAS), especially in dairy cattle populations with large male paternal half-sib families. Linkage phase between the superior (Q) and the inferior (q) QTL alleles of heterozygous sires (Qq at the QTL) with informative markers is established within each paternal half-sib family and may be used for selection among grand-progeny. If, additionally to sires, bulldams are also genotyped and data from consecutive generations are used, then a marker-assisted best linear unbiased prediction (MA-BLUP) model can be employed to connect the information of all generations and families of a top down design, and to select across all families. A customized ,augmented' sire model (with sires and dams of sires as random effects) is introduced for this purpose. Adapted formulae for the mixed model equations are given and their equivalence to a corresponding animal model and to a certain variant of previously proposed reduced animal models is shown. The application of the augmented sire model in MA-BLUP estimation from daughter-yield deviations and effective daughter contributions is presented. Zusammenfassung Die Top down Vorselektion von jungen Bullen vor der Nachkommenschaftsprüfung ist bekannt als eine praktikable Form der markergestützten Selektion in Milchrinderpopulationen. Die Kopplungsphasen zwischen dem günstigen (Q) und dem ungünstigen (q) Allel eines QTL heterozygoten Vaters (Qq am QTL) mit den Allelen gekoppelter genetischer Marker werden innerhalb Familien festgestellt und können zur Vorselektion von Enkeln genutzt werden. Wenn zusätzlich zu den Vätern die Mütter genotypisiert sind und Daten von mehreren Generationen vorliegen, können MA-BLUP Modelle genutzt werden, um Informationen von mehreren Familien und mehreren Generationen eines Top down Designs zusammenzuführen und um eine Vorselektion über Familien hinweg vorzunehmen. Hierfür wird ein geeignetes ,erweitertes' Vatermodell eingeführt, welches die Väter und zusätzlich die Mütter der Väter als zufällige Effekte enthält. Angepasste Formeln für die gemischten Modell Gleichungen werden beschrieben. Die Gleichheit dieses erweiterten Vatermodells mit einem entsprechenden Tiermodell und mit einer Variante des reduzierten Tiermodells wird gezeigt. Die Anwendung des erweiterten Vatermodells zur MA-BLUP Schätzung mit daughter yield deviations und effective daughter contributions ist beschrieben. [source] Simple preconditioners for the conjugate gradient method: experience with test day modelsJOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 3 2002I. STRANDÉN Preconditioned conjugate gradient method can be used to solve large mixed model equations quickly. Convergence of the method depends on the quality of the preconditioner. Here, the effect of simple preconditioners on the number of iterations until convergence was studied by solving breeding values for several test day models. The test day records were from a field data set, and several simulated data sets with low and high correlations among regression coefficients. The preconditioner matrices had diagonal or block diagonal parts. Transformation of the mixed model equations by diagonalization of the genetic covariance matrix was studied as well. Preconditioner having the whole block of the fixed effects was found to be advantageous. A block diagonal preconditioner for the animal effects reduced the number of iterations the higher the correlations among animal effects, but increased memory usage of the preconditioner. Diagonalization of the animal genetic covariance matrix often reduced the number of iterations considerably without increased memory usage. Einfache Preconditioners für die `Conjugate Gradient Method': Erfahrungen mit Testtagsmodellen Die `Preconditioned Conjugate Gradient Methode' kann benutzt werden um große `Mixed Model' Gleichungssysteme schnell zu lösen. In diesem Beitrag wurde der Einfluss von einfachen Preconditioners auf die Anzahl an Iterationen bis zur Konvergenz bei der Schätzung von Zuchtwerten bei verschiedenen Testtagsmodellen untersucht. Die Testtagsdaten stammen aus einem Felddatensatz und mehreren simulierten Datensätzen mit unterschiedlichen Korrelationen zwischen den Regressionskoeffizienten. Die Preconditioner Matrix bestand aus Diagonalen oder Blockdiagonalen Teilen. Eine Transformation der Mixed Modell Gleichungen durch Diagonalisierung der genetischen Kovarianzmatrix wurde ebenfalls untersucht. Preconditioners mit dem Block der fixen Effekte zeigten sich immer überlegen. Ein Blockdiagonaler Preconditioner für den Tiereffekt reduzierte die Anzahl an Iterationen mit höher werden Korrelationen zwischen den Tiereffekten, aber erhöhte den Speicherbedarf. Eine Diagonalisierung der genetischen Kovarianzmatrix reduzierte sehr oft die Anzahl an Iterationen erheblich ohne den Speicherbedarf zu erhöhen. [source] Reducing the effect of parent averages from animal solutions in mixed model equationsJOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 6 2000L. Wu Summary Selection of animals based on their BLUP evaluations from an animal model results in animals that are closely related which leads to increased rates of inbreeding. The tendency for higher inbreeding rates is greater at low heritability values. Several attempts have been made to reduce the impact of parent average breeding values from animals evaluations in order to reduce inbreeding while not sacrificing genetic response. A method that modifies the rules for forming the inverse of the additive genetic relationship matrix for use in best linear unbiased estimation of breeding values via an animal model was developed. This method and several others were compared analytically and empirically, from the perspective of partitioning the animal solutions into contributions from the data, from progeny, and from the parent average. The ratio of genetic progress to average level of inbreeding showed that the modified relationship matrix method was superior to the other methods. Similar results could be obtained by using artificially high heritability in a usual BLUP analysis. Zusammenfassung Die Selektion von Tieren aufgrund ihrer geschätzten BLUP-Zuchtwerte unter einem Tiermodell ergibt verwandte Tiere, was zu gesteigerten Inzuchtraten führt. Einige Versuche wurden unternommen, um die Wirkung des elterlichen Zuchtwertduchschnitts auf die geschätzten Tierzuchtwerte zu reduzieren, um einerseits die Inzucht einzugrenzen, aber andererseits den Zuchtfortschritt nicht zu beeinträchtigen. Es wurde eine Methode entwickelt, welche die Regeln zur Aufstellung der additiven genetischen Verwandtschaftsmatrix im Tiermodell für die BLUP-Zuchtwertschätzung modifiziert. Diese und einige andere Methoden wurden empirisch und analytisch verglichen. Das geschah aus der Sicht, die Lösungen für die Tiereffekte in Bezug auf den Beitrag der Eltern, der Eigenleistung und der Nachkommen aufzuteilen. Das Verhältnis des Zuchtfortschritts zum mittleren Inzuchtniveau zeigte, dass die modifizierte Verwandtschaftsmatrix als Methode allen anderen überlegen war. Ähnliche Ergebnisse konnten erreicht werden, wenn in einer gewöhnlichen BLUP-Analyse der Heritabilitätsparameter künstlich hochgesetzt wird. [source] Use of microemulsions for removal of color and dyes from textile wastewaterJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2004Tereza Neuma de Castro Dantas Abstract One of the major environmental problems in the textile dyeing industry is the removal of color from effluents. The present study deals with color removal from effluents using microemulsions. The wastewater used in this study was the reactive exhausted dye liquor from a dyeing house containing Procion Yellow H-E4R (CI Reactive Yellow 84), Procion Blue H-ERD (CI Reactive Blue 160) and Procion Red H-E3B (CI Reactive Red 120). Color removal was determined by CIEL*a*b* (CIELAB) color space, CIEL*a*b* color difference, ,E*ab, and absorbance. Color removal greater than 95% was achieved, attaining values lower than the consent requirements established by the Environmental Agency. It was observed that pH is an important parameter in color removal and effluent pH correction from 10.44 to 9 before extraction improved results. The results obtained were modeled using the Scheffé net method and evaluated through the construction of isoresponse diagrams by correlation graphics between experimental values and those obtained through use of model equations, providing an experimental error of less than 2%. The optimized method very efficiently removed all dyes contained in the effluent. The same microemulsion phase recovered after the extraction process can be used at least a further 14 times and all the extractions gave good color removal. Copyright © 2004 Society of Chemical Industry [source] EFFECTS of SHUCKING METHOD ON OPENING, MEAT YIELD and SELECTED QUALITY PARAMETERS of WEST AFRICAN CLAM, GALATEA PARADOXA (BORN)JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 5 2000E.O. EKANEM Samples (n= 100) of freshly harvested clams (Galatea paradoxa Born) from the Cross River, Nigeria, were subjected after 24 h depurations to heat treatment (steam and water at 60, 70, 80, 90, 100C) for 1,6 min to evaluate the effects of level of heat treatment on opening, meat yield, sensory properties, proximate composition, pH and electrical conductivity (EC). Observations were also made on the effects of some chemical shucking aids (NaOH, NaHCO3, Na2CO3, NaCl) in 60C water on these parameters. Results showed that boiling water was most effective in opening the clams, with 100% shucking achieved in 1 min. Steam was least effective, requiring 6 min for 100% opening. Temperature significantly and strongly influenced meat yield (p<0.05;r=-0.92). pH (p<0.01; r=0.97), EC (p<0.05; r =0.65) and sensory properties (p<0.05). In general, shucking aids reduced opening time, significantly p<0.05) raised meat pH and EC, and with the exception of NaCl, insignificantly (P>0.05) improved yield. NaHCO3, and Na2CO3, which cut time for 100% opening from 5 min to 2 min were most effective. There were slight but significant (P <0.05) drops in meat moisture, crude protein and ash contents with increase in temperature (T). the model equations, pH = 4.69 + 0.021 T and % yield = 39.95,0.172 T were found to reliably predict meat pH and yield, with insignificant differences (P>0.05) between predicted and experimental values. [source] A mechanistic model for roll waves for two-phase pipe flowAICHE JOURNAL, Issue 11 2009George W. Johnson Abstract A new two-phase roll wave model is compared with data from high pressure two-phase stratified pipe flow experiments. Results from 754 experiments, including mean wave speed, wave height, pressure gradient, holdup and wave length, are compared with theoretical results. The model was able to predict these physical quantities with good accuracy without introducing any new empirically determined quantities to the two-fluid model equations. This was possible by finding the unique theoretical limit for nonlinear roll amplitude and applying a new approach for determining the friction factor at the gas-liquid interface. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Experimental and numerical investigation of the precipitation of barium sulfate in a rotating liquid film reactorAICHE JOURNAL, Issue 8 2009Shengchang Guo Abstract Precipitation of nanosized barium sulfate in a rotating liquid film reactor (RLFR) has been investigated experimentally and through simulations based on the computational fluid dynamics technique including the population balance equation coupled with the Navier,Stokes equations, renormalization group k,, model equations, and species transport equations. A comparative experiment was carried out involving conventional precipitation in a flask. The structure of the precipitate was identified by powder X-ray diffraction (PXRD), which showed that the crystals obtained using the RLFR were smaller in size than those obtained in the flask. Transmission electron microscopy (TEM) images demonstrated that the crystals produced by the two different processes had different morphologies. Further detailed experiments involving varying the operating parameters of the RLFR were performed to investigate the effects on crystal size distribution (CSD). Increasing the speed of the rotor in the RLFR in the range 1000,5000 rpm or increasing the rotor-stator gap in the range 0.1,0.5 mm resulted in a decrease in particle size and narrower particle size distributions. The simulation results suggested that turbulent effects and reaction processes in the effective reactor space were directly related to rotor speed and rotor-stator gap. The simulated volume weighted mean diameter and CSD of particles of barium sulfate were almost identical to the corresponding experimental results obtained using TEM and laser particle size analyzer. The effects of other parameters such as the Kolmogorov scale and competition between induction time and mixing time are also discussed. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] A generic feasibility study of batch reactive distillation in hybrid configurationsAICHE JOURNAL, Issue 5 2009C. Stéger Abstract A new graphical feasibility method is developed to investigate batch reactive distillation processes in middle vessel column. The suggested methodology can deal with fully reactive, nonreactive, and complex column configuration. A new formulation is suggested to describe the composition profiles in the reactive sections. Its application has made possible to develop a generic feasibility methodology containing the same model equations independently of the presence or absence of reaction. By combining the reactive and nonreactive models, not only the fully reactive and fully nonreactive but also hybrid configurations can be studied. Feasibility criteria related to the hybrid configurations are also presented. Application of the new methodology is demonstrated on the production of ethyl acetate in batch reactive distillation. Five configurations are found feasible; pure EtOAc is produced as distillate, and pure H2O is produced at the bottom. In each case, continuous feeding of AcOH is necessary. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Mechanistic understanding of degradation in bioerodible polymers for drug deliveryAICHE JOURNAL, Issue 12 2002Domenico Larobina A new model was developed to understand the mechanism of erosion in bioerodible polymers, which is essential to accurately predict drug release and precisely design controlled release devices. This model takes into account the phenomenon of microphase separation observed for polyanhydrides of certain copolymer compositions, and assumes that erosion is dominated by degradation and, thus, in a system with a fast eroding and a slow eroding species, two rate constants,one for each species,essentially control the evolution of the polymer microstructure. Expressions were derived for the fraction of each monomer released, as well as for the porosity in the system. A partition coefficient accounts for thermodynamic partitioning of a drug into the microdomains. The solutions of the model equations were fitted to experimental data on monomer release kinetics from two polyanhydride systems to obtain the erosion rate constants. Drug release kinetics experiments are compared to the model solution for drug release, and the partition coefficient of the drug is obtained from the fits. The comparisons to the data are promising, while pointing out the limitations of the model. The model does not account for oligomer formation prior to monomer release or for the dependence of the rate constants on parameters such as the degree of crystallinity, the local pH, and the polymer molecular weight. [source] Single dopant diffusion in semiconductor technologyMATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 2 2004A. Glitzky Abstract The paper deals with the analysis of pair diffusion models in semiconductor technology. The underlying model contains reaction-drift-diffusion equations for the mobile point defects and dopant-defect pairs as well as reaction equations for immobile dopants which are coupled with a non-linear Poisson equation for the chemical potential of the electrons. For homogeneous structures we present an existence and uniqueness result for strong solutions. Starting with energy estimates we derive further a priori estimates such that fixed point arguments due to Leray,Schauder guarantee the solvability of the model equations. Copyright © 2004 John Wiley & Sons, Ltd. [source] Energy properties preserving schemes for Burgers' equation,NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, Issue 1 2008R. Anguelov Abstract The Burgers' equation, a simplification of the Navier,Stokes equations, is one of the fundamental model equations in gas dynamics, hydrodynamics, and acoustics that illustrates the coupling between convection/advection and diffusion. The kinetic energy enjoys boundedness and monotone decreasing properties that are useful in the study of the asymptotic behavior of the solution. We construct a family of non-standard finite difference schemes, which replicate the energy equality and the properties of the kinetic energy. Our approach is based on Mickens' rule [Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994.] of nonlocal approximation of nonlinear terms. More precisely, we propose a systematic nonlocal way of generating approximations that ensure that the trilinear form is identically zero for repeated arguments. We provide numerical experiments that support the theory and demonstrate the power of the non-standard schemes over the classical ones. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007 [source] Trajectory optimization involving sloshing mediaOPTIMAL CONTROL APPLICATIONS AND METHODS, Issue 1 2002Harald Leonpacher Abstract This paper is concerned with the optimization of the transport motion of an open topped fluid filled container within a warehouse environment. In particular, optimal trajectories of the motion of the driver,container system in two-dimensional space will be investigated via numerical solutions of the model equations using sequential quadratic programming. The fluid and the mechanical facility that moves the container are subject to several constraints. The objective of the optimization is the time to transport the container from an initial position to its final destination within the warehouse. Optimization criteria are investigated to control the movement of the fluid within the container. The systems of ordinary and partial differential equations, representing the dynamics of the models are solved numerically using a direct shooting method. The resulting non-linear programming problem is solved using sequential quadratic programming (SQP). Copyright © 2002 John Wiley & Sons, Ltd. [source] Model Based Control of a Parallel Robot , A Comparison of Control AlgorithmsPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2003Hubert Hahn Prof. Dr.Article first published online: 25 MAR 200 In this contribution the control behavior of a special construction of a parallel robot, called multi-axes test facility, is investigated. After a brief discussion of the different tasks of the robot the construction of the robot is briefly presented. To solve the tasks, different control algorithms are derived based on model equations of different complexity of the robot. Depending on the task to be performed by the robot, the controllers compensate the kinematic and/or kinetic coupling of the degrees of freedom of the robot, stabilize the system and achieve the desired spatial motion of each degree of freedom as well as sufficient robustness with respect to parameter uncertainties and load variations. A few results obtained in computer simulations and laboratory experiments are presented and judged with respect to the quality of control, the closeness to reality of the computer simulations, and the amount of costs and work needed to realize the different solutions. [source] A New Group Contribution Method based on Equation of State Parameters to Evaluate the Critical Properties of Simple and Complex MoleculesTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2006José O. Valderrama Abstract A new group contribution method to evaluate the critical properties (temperature, pressure and volume) is presented and applied to estimate the critical properties of biomolecules. Similar to other group contribution methods, the one proposed here divides the molecule into conveniently defined groups and evaluates the properties as the sum of the different contributions according to a specified model equation for each of the properties. The proposed method consists of a one-step calculation that uses simple model equations and does not require additional data besides the knowledge of the structure of the molecule, except for isomers. For these substances the normal boiling temperature, the molecular mass and the number of atoms in the molecule are used to distinguish among isomers. The method is applicable to high molecular weight compounds, as most biomolecules and large molecules present in natural products. On présente une nouvelle méthode de contribution de groupe pour évaluer les propriétés critiques (température, pression et volume) de biomolécules. Comme dans le cas d'autres méthodes de contribution de groupe, celle qu'on présente ici divise la molécule en groupes définis de manière pratique et évalue les propriétés comme la somme des différentes contributions selon une équation de modèle spécifique pour chacune des propriétés. La méthode proposée consiste en un calcul en une étape qui utilise des équations de modèle simple et, excepté pour les isomères, ne requiert pas de données supplémentaires hormis la structure de la molécule. Pour ces substances, on utilise la température d'ébullition normale, la masse moléculaire et le nombre d'atomes dans la molécule pour distinguer entre les isomères. La méthode est applicable à des composés de poids moléculaire élevé, comme la plupart des biomolécules et des molécules larges présentes dans les produits naturels. [source] Physical Model-Based Indirect Measurements of Blood Pressure and Flow Using a Centrifugal PumpARTIFICIAL ORGANS, Issue 8 2000Tadashi Kitamura Abstract: This article describes a technique offering indirect measurements of pump pressure differential and flow with certain accuracy independent of changes in blood viscosity. This technique is based on noninvasive measurements of the motor current and rotation speed using the physical model equations of the centrifugal pump system. Blood viscosity included in the coefficients of the dynamic equations is first estimated, and then substitution of the estimated viscosity into the steady equations of the model provides pump flow and pressure differential. In vitro tests using a Capiox pump showed a sufficient linear correlation between actual values and their estimates for pressure differential and pump flow. An in vivo test using a 45 kg sheep showed that the proposed algorithm needs robustness for the convergence of estimates of viscosity. An overall evaluation, however, of the developed algorithm/model showed indications of success in terms of efficient computation and modeling. [source] Probability Density Function (PDF) Simulation of Turbulent Reactive Gas-Solid Flow in a RiserCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 3 2009S. N. P. Vegendla Abstract A hybrid Lagrangian-Eulerian methodology is developed for the numerical simulation of turbulent reactive gas-solid flow. The SO2 -NOx Adsorption Process (SNAP) in a riser reactor with dilute gas-solid flow is taken as a test case. A three-dimensional time-dependent simulation is performed. By using the transported composition PDF method [1], modeling of the mean chemical source term and mass transfer terms in the gas-solid flow model equations is no longer needed. A notional particle-based Monte-Carlo algorithm is used to solve the transported composition PDF equations. A Finite-Volume technique is used to calculate the hydrodynamic fields from the Reynolds Averaged Navier Stokes (RANS) equations combined with the k -, turbulence model for the gas phase and the Kinetic Theory of Granular Flow (KTGF) for the solid phase [2]. The newly developed hybrid solution technique is tested with the SNAP chemistry that has a total of 13 scalars (i.e., 5 gas phase components and 8 solid phase species) for which the composition fields of the reactive species are calculated. A good agreement between simulated and experimental gas-outlet composition of a demonstration unit is obtained. [source] |