Home About us Contact | |||
Model Description (model + description)
Selected AbstractsModel description and parameter extraction of on-chip spiral inductors for MMICsINTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, Issue 2 2004W. Y. Yin Abstract A statistical description of the global performance of on-chip spiral inductors, based on extensive measurement is presented. These inductors were fabricated with different turn numbers or track lengths/track widths, but with the same spacing. From the S parameters measured using a de-embedding technique, the inductance L, Q factor, self-resonance frequency, and figure-of-merit indicator (FMI) of these inductors are determined. Various local scalable formulas are obtained in order to describe the features of these inductors. Based on extensive parametric studies, certain ways to improve these inductor performances can be found. © 2004 Wiley Periodicals, Inc. Int J RF and Microwave CAE 14, 111,121, 2004. [source] Wavelet analysis of the scale- and location-dependent correlation of modelled and measured nitrous oxide emissions from soilEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2005A. E. Milne Summary We used the wavelet transform to quantify the performance of models that predict the rate of emission of nitrous oxide (N2O) from soil. Emissions of N2O and other soil variables that influence emissions were measured on soil cores collected at 256 locations across arable land in Bedfordshire, England. Rate-limiting models of N2O emissions were constructed and fitted to the data by functional analysis. These models were then evaluated by wavelet variance and wavelet correlations, estimated from coefficients of the adapted maximal overlap discrete wavelet transform (AMODWT), of the fitted and measured emission rates. We estimated wavelet variances to assess whether the partition of the variance of modelled rates of N2O emission between scales reflected that of the data. Where the relative distribution of variance in the model is more skewed to coarser scales than is the case for the observation, for example, this indicates that the model predictions are too smooth spatially, and fail adequately to represent some of the variation at finer scales. Scale-dependent wavelet correlations between model and data were used to quantify the model performance at each scale, and in several cases to determine the scale at which the model description of the data broke down. We detected significant changes in correlation between modelled and predicted emissions at each spatial scale, showing that, at some scales, model performance was not uniform in space. This suggested that the influence of a soil variable on N2O emissions, important in one region but not in another, had been omitted from the model or modelled poorly. Change points usually occurred at field boundaries or where soil textural class changed. We show that wavelet analysis can be used to quantify aspects of model performance that other methods cannot. By evaluating model behaviour at several scales and positions wavelet analysis helps us to determine whether a model is suitable for a particular purpose. [source] Trophodynamic modeling of walleye pollock (Theragra chalcogramma) in the Doto area, northern Japan: model description and baseline simulationsFISHERIES OCEANOGRAPHY, Issue 2004ORIO YAMAMURA Abstract An age-structured trophodynamic model was constructed to quantitatively analyze factors affecting post-settlement mortality and growth of walleye pollock (Theragra chalcogramma) in the Doto area, the main nursery ground of the Japan Pacific population. The model included (i) multiple age classes of pollock, (ii) a generic predator, (iii) fisheries, and (iv) major prey of pollock. Major processes considered were (i) recruitment, (ii) bottom-up control of somatic growth, (iii) mortality because of predation, cannibalism and fishing, (iv) size-selective prey selection, (v) temperature-dependent bioenergetics such as conversion efficiency and daily consumption rate, and (vi) production and advective supply of prey. By assuming that pollock select prey based upon both relative abundance and predator,prey size relationships, the model accurately simulated seasonal and ontogenetic variations in the diet. However considering ontogenetic segregation, the model showed that, due to cannibalism, newly recruited fish would be totally consumed within 6 months after settlement. By considering segregation (10% overlap during spring and 0.1% during other seasons), an agreement of diet between the simulation and empirical data averaged 82.7% for the different seasons and fish sizes. Euphausiids, the most important prey of pollock, suffered the highest predation impact (22.2 ± 5.3 WWg m,2 yr,1) exceeding annual production in the model domain (17.2 ± 0.1 WWg m,2 yr,1), indicating that an advective supply of prey is necessary to support the pollock population. The daily ration of pollock during spring and summer averaged at 1.2 and 0.6% BW day,1 for small (,200 mm) and large (>200 mm) pollock, respectively; this daily ration was reduced by half during autumn and winter. [source] Vadose Zone Flow Model Uncertainty as Conditioned on Geophysical DataGROUND WATER, Issue 2 2003Andrew Binley An approach to estimating the uncertainty in model descriptions based on a landscape space to model space mapping concept is described. The approach is illustrated by an application making use of plot scale geophysical estimates of changes in water content profiles to condition a model of recharge to the Sherwood Sandstone Aquifer in the United Kingdom. It is demonstrated that the mapping is highly uncertain and that many different parameter sets give acceptable simulations of the observations. Multiple profile measurements over time offer only limited additional constraints on the mapping. The resulting mapping weights may be used to evaluate uncertainty in the predictions of vadose zone flow dynamics for the site. [source] Modeling zinc sulfhydryl bonds in zinc fingersINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 3-4 2001Johan Bredenberg Abstract Molecular dynamics simulations have been carried out employing three different model descriptions of the zinc sulfhydryl interactions in class II fingers. One bonded and two nonbonded models were studied. Two variant structures of the glucocorticoid receptor DNA-binding domain and a NMR structure from a fragment of methionyl-tRNA synthetase were subjected to long-time MD simulations with these models. Our analysis is focused on comparison with experimental and quantum mechanical data, concerning the local Zn-finger and overall structural and dynamic properties for these models. All models performed well, but the nonbonded models appeared to reproduce the protein dynamics in better agreement with experimental data than does the bonded description. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 230,244, 2001 [source] |