Model Composites (model + composite)

Distribution by Scientific Domains


Selected Abstracts


Electrical Percolation Behavior in Silver Nanowire,Polystyrene Composites: Simulation and Experiment

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
Sadie I. White
Abstract The design and preparation of isotropic silver nanowire-polystyrene composites is described, in which the nanowires have finite L/D (< 35) and narrow L/D distribution. These model composites allow the L/D dependence of the electrical percolation threshold, ,c, to be isolated for finite- L/D particles. Experimental ,c values decrease with increasing L/D, as predicted qualitatively by analytical percolation models. However, quantitative agreement between experimental data and both soft-core and core,shell analytical models is not achieved, because both models are strictly accurate only in the infinite- L/D limit. To address this analytical limitation, a soft-core simulation method to calculate ,c and network conductivity for cylinders with finite L/D are developed. Our simulated ,c results agree strongly with our experimental data, suggesting i) that the infinite-aspect-ratio assumption cannot safely be made for experimental networks of particles with L/D < 35 and ii) in predicting ,c, the soft-core model makes a less significant assumption than the infinite- L/D models do. The demonstrated capability of the simulations to predict ,c in the finite- L/D regime will allow researchers to optimize the electrical properties of polymer nanocomposites of finite- L/D particles. [source]


In vitro biostability evaluation of polyurethane composites in acidic, basic, oxidative, and neutral solutions

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2008
SuPing Lyu
Abstract New and improved properties can often be achieved by compounding two or more different but compatible materials. But, can failure possibility also be increased by such a compounding strategy? In this article, we compared the in vitro biostability of composites with that of the pure polymer. We tested three model composites in oxidative, acidic, basic, and neutral solutions. We found that oxidation degradation was much more profound in the composites than in the corresponding pure polymer. This degradation seemed to be an intrinsic property of composite materials. We also observed the well documented interfacial debonding between filler and matrix and its effects on the mechanical reinforcement of the hydrated composites. The improvements in acid and base resistance were also observed. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source]


Influence of inter-fiber spacing and interfacial adhesion on failure of multi-fiber model composites: Experiment and numerical analysis

POLYMER COMPOSITES, Issue 9 2008
Hongzhou Li
The uniaxial tension experiments on glass-fiber-reinforced epoxy matrix composites reveal that the fragmentations of fibers display vertically aligned fracture, clustered fracture, coordinated fracture, and random fracture with the increase of inter-fiber spacing. The finite element analysis indicates that the fragmentations of fibers displaying different phenomena are due to the stress concentration as well as the inherent randomness of fiber defects, which is the dominant factor. The experimental results show that matrices adjacent to the fiber breakpoints all exhibit birefringent-whitening patterns for the composites with different interfacial adhesion strengths. The larger the extent of the interfacial debonding, the less the domain of the birefringent-whitening patterns. The numerical analysis indicates that the orientation of the matrix adjacent to a fiber breakpoint is caused by the interfacial shear stress, resulting in the birefringent-whitening patterns. The area of shear stress concentrations decides on the domain of the birefringent-whitening patterns. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers [source]


Polymerization compounding of HDPE/Kevlar composites.

POLYMER COMPOSITES, Issue 2 2006

The aim of this work is to perform the polymerization compounding to improve the properties of Kevlar/PE composites. The approach consists in involving the surface of a reinforcement in a polymerization process of a polymer to be used either as a matrix in the final composite or as a special surface treatment to enhance solid/polymer interface properties in the composite. The polymerization compounding process is illustrated here with the polyaramid fibers as reinforcements and polyethylene as a matrix. The number of active sites on the fiber surface, initially insufficient to anchor the catalyst, were increased by a hydrolysis reaction prior to the polymerization. The anchored catalyst was subsequently used to conduct the Ziegler,Natta polymerization reaction of ethylene. The modified fibers were incorporated into the polyethylene resin to produce composites at fiber concentrations as high as 15 wt%. The morphology of the fibers and the composites was tested using electron microscopy. Finally, the mechanical properties of the composites (in impact and tensile tests) were measured to characterize the properties of model composites. Polym. Compos. 27:129,137, 2006. © 2006 Society of Plastics Engineers. [source]


In situ monitoring of residual strain development during composite cure

POLYMER COMPOSITES, Issue 3 2002
Allan S. Crasto
Internal (residual) stresses build up in a thermosetting composite as the matrix shrinks during cure, and again as the composite is cooled to ambient from its elevated processing temperature. These stresses can be significant enough to distort the dimensions and shape of a cured part as well as initiate damage in off-axis plies, either during fabrication or under the application of relatively low mechanical loads. The magnitude of these stresses depends on a number of factors including constituent anisotropy, volume fraction and thermal expansion, ply orientation, process cycle, and matrix cure chemistry. In this study, embedded strain gauges were employed to follow, in situ, the buildup of residual strains in carbon fiber-reinforced laminates during cure. The data were compared to those from volumetric dilatometer studies to ascertain the fraction of resin shrinkage that contributed to residual stress buildup during cure. Based on earlier studies with single-fiber model composites, the process cycle in each case was then varied to determine if the cycles optimized to minimize residual stresses for isolated fibers in an infinite matrix were applicable to the reduction of residual stresses in conventional multifiber composites. The results of these studies are reported here. [source]