Home About us Contact | |||
Model Analyte (model + analyte)
Selected AbstractsSpectroelectrochemical Sensing Based on Multimode Selectivity Simultaneously Achievable in a Single Device.ELECTROANALYSIS, Issue 5 2007Abstract Quaternized poly(4-vinylpyridine) (QPVP) has been incorporated as an anion exchanger into sol-gel derived silica films for use in a spectroelectrochemical sensor. The preparation, characteristics and performance of these films are described. The films, which are spin-coated onto the surface of a planar optically transparent electrode, are optically transparent and uniform. Scanning electron microscopy and spectroscopic ellipsometry have been used to examine film structure, thickness and optical properties. These films have been shown both spectroscopically and electrochemically to preconcentrate ferrocyanide, a model analyte for the sensor. The films can be regenerated for multiple measurements by exposure to 1,M KNO3. The effects of polymer molecular weight and storage conditions on film performance are described. The overall response of this film is comparable to the poly(dimethyldiallylammonium chloride)-silica films previously used for this sensor. [source] Barrel Plating Rhodium Electrode: Application to Flow Injection Analysis of HydrazineELECTROANALYSIS, Issue 14 2005Jun-Wei Sue Abstract We introduce here the application of barrel plating technology for mass production of disposable-type electrodes. Easy for mass production, barrel plating rhodium electrode (Rh-BPE) is for the first time demonstrated for analytical application. Hydrazine was chosen as a model analyte to elucidate the electrocatalytic and analytical ability of the Rh-BPE system in pH,7 phosphate buffer solution. Flow injection analysis (FIA) of hydrazine showed a linear calibration range of 25,1000,ppb with a slope and a regression coefficient of 5,nA/ppb and 0.9946, respectively. Twenty-two replicate injections of 25,ppb hydrazine showed a relative standard deviation of 3.17% indicating a detection limit (S/N=3) of 2.5,ppb. The system can be continuously operated for 1 day without any alteration in the FIA signals and is tolerable to the interference of oxalic acid, gelatine, Triton X-100, and albumin for even up to 100 times excess in concentration with respect to 400,ppb hydrazine. Since the fabrication cost of the electrode is cheap, it is thus disposable in nature. Furthermore, barrel plating technique can be extendable to other transition metals for application in many fields of research interest. [source] Electrokinetic partial filling technique as a powerful tool for enantiomeric separation of DL -lactic acid by CE with contactless conductivity detectionELECTROPHORESIS, Issue 11 2007zslav Maier Dr. Abstract A modified partial filling method for chiral separation of DL -lactic acid as the model chiral compound with vancomycin chloride as the chiral selector was developed by CE with contactless conductivity detection. Electrokinetic partial filling technique (EK-PFT) was used as an alternative method to the conventional hydrodynamic partial filling method. EK-PFT, in contrast to the hydrodynamic partial filling technique, allowed the removal of the chloride counterions from the chiral selector which otherwise led to poor sensitivity in conductivity detection. The baseline separation of DL -lactic acid as the model analyte was achieved in 5,min in a polyacrylamide-coated capillary. The best resolution was achieved by electrokinetic partial filling of vancomycin cations from the injection solution containing 5,mmol/L oxalate L -histidinium at pH,4.5 with 10,mmol/L vancomycin chloride. Computer simulation was used to explain the observed phenomena in the boundary between the inject vial and the capillary during the EK-PFT of vancomycin cations. [source] Poly(methylmethacrylate) and Topas capillary electrophoresis microchip performance with electrochemical detectionELECTROPHORESIS, Issue 16 2005Mario Castańo-Álvarez Abstract A capillary electrophoresis (CE) microchip made of a new and promising polymeric material: Topas (thermoplastic olefin polymer of amorphous structure), a cyclic olefin copolymer with high chemical resistance, has been tested for the first time with analytical purposes, employing an electrochemical detection. A simple end-channel platinum amperometric detector has been designed, checked, and optimized in a poly-(methylmethacrylate) (PMMA) CE microchip. The end-channel design is based on a platinum wire manually aligned at the exit of the separation channel. This is a simple and durable detection in which the working electrode is not pretreated. H2O2 was employed as model analyte to study the performance of the PMMA microchip and the detector. Factors influencing migration and detection processes were examined and optimized. Separation of H2O2 and L -ascorbic acid (AsA) was developed in order to evaluate the efficiency of microchips using different buffer systems. This detection has been checked for the first time with a microchip made of Topas, obtaining a good linear relationship for mixtures of H2O2 and AsA in different buffers. [source] Thin-layer chromatography combined with diode laser desorption/atmospheric pressure chemical ionization mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 16 2004Song Peng The desorption of an analyte by a continuous wave diode laser from a porous surface of a thin-layer plate covered with a graphite suspension is presented. The thermally desorbed analyte molecules are ionized in the gas phase by a corona discharge at atmospheric pressure. Therefore, both essential processes,the desorption and the ionization of analyte molecules, which are often performed in one step,are separated. The target preparation is easy and fast since no additional extraction process is required. The mass spectrometric background signal was mostly limited to the low mass range showing no interference with typical compounds of interest. In this study, the calmative and antihypertensive drug reserpine was chosen as model analyte, which is often used for specification of mass spectrometers. No fragmentation was observed because of efficient collisional cooling under atmospheric pressure. The influence of diode laser power and the composition of the graphite suspension were investigated, and a primary optimization was performed. Copyright © 2004 John Wiley & Sons, Ltd. [source] Low-Frequency Sonophoresis: A Noninvasive Method of Drug Delivery and DiagnosticsBIOTECHNOLOGY PROGRESS, Issue 3 2000Samir Mitragotri Transdermal drug delivery offers an attractive alternative to injections and oral medications. However, applications of transdermal drug delivery are limited to only a few drugs as a result of low skin permeability. Application of low-frequency ultrasound enhances skin permeability, a phenomenon referred to as low-frequency sonophoresis. In this method, a short application of ultrasound is used to permeabilize skin for a prolonged period of time. During this period, ultrasonically permeabilized skin may be utilized for drug delivery. In addition, a sample of interstitial fluid or its components may be extracted through permeabilized skin for diagnostic applications. In this paper, we report our in vivo studies that demonstrate the principles of both of these concepts. Detailed studies on drug delivery are performed using inulin and mannitol as model drugs. Studies on diagnostics are performed using glucose as a model analyte. Applications of this technology to drug delivery and diagnostics are discussed. [source] Electrochemical Modulation of Remote Fluorescence Imaging at an Ordered Opto-electrochemical Nanoaperture ArrayCHEMPHYSCHEM, Issue 8 2004Arnaud Chovin Abstract An array of nanometer-sized apertures capable of electrochemically modulating the fluorescence of a model analyte is presented. The device, which combines near-field optical methods and ultramicroelectrode properties in an array format, is based on an etched coherent optical fiber bundle. Indeed, the fabrication steps produced an ordered array where each optical nanoaperture is surrounded by a ring-shaped gold nanoelectrode. The chronoamperometric behavior of the array shows stable diffusion-limited quasi-steady-state response. The model analyte, tris(2,2,-bipyridine) ruthenium, emits fluorescence in the Ru(II) state, but not in the oxidized Ru(III) state. Fluorescence is excited by visible light exiting from each nanoaperture since light is confined to the tip apex by the gold coating. A fraction of the isotropically emitted luminescence is collected by the same nanoaperture, transmitted by the corresponding fiber core and eventually detected by a charge-coupled device (CCD) camera. The array format provides a fluorescence image resolved at the nanometric scale which covers a large micrometric area. Therefore the high-density array plays a bridging role between these two fundamental scales. We established that the opto-electrochemical nanoapertures are optically independent. Fluorescence of the sample collected by each nanoaperture is modulated by changing the potential of the nanoring electrodes. Reversible electrochemical switching of remote fluorescence imaging is performed through the opto-electrochemical nanoaperture array itself. Eventually this ordered structure of nanometer light sources which are electrochemically manipulated provides promising photonic or electro-optical devices for various future applications. For example, such an array has potential in the development of a combined SNOM-electrochemical nanoprobe array to image a real sample concomitantly at the nanometer and micrometer scale. [source] Microchip electrophoresis with wall-jet electrochemical detector: Influence of detection potential upon resolution of solutesELECTROPHORESIS, Issue 24 2006Martin Pumera Dr. Abstract This report studies the electrochemical response of wall-jet detector for microchip electrophoresis (µCE). It shows that in wall-jet configuration, the electrochemical detector operates in coulometric mode and that there is an influence of detection potential upon peak width and therefore upon the resolution of solutes. Upon raising the detection potential from +0.3 to +0.9,V, the resolution between model analytes, dopamine and catechol, increases from 0.63 to 2.90. The reasons for this behavior originate in wall-jet detector design and in its typically significant higher detector volume than the volume of injected sample. The conversion efficiency of the wall-jet electrochemical detection cell was found to be 97.4% for dopamine and 98.0% for catechol. The paper brings deeper understanding of operations of wall-jet electrochemical detectors for microchip devices, and it explains previously reported significantly sharper peaks when electrocatalytic electrodes (i.e., palladium and carbon nanotube) were used in µCE-electrochemistry wall-jet detector. [source] Analytical potential of 6-oxy-(N -succinimidyl acetate)-9-(2'-methoxycarbonyl) fluorescein for the determination of amino compounds by capillary electrophoresis with laser-induced fluorescence detectionELECTROPHORESIS, Issue 10 2005Liwei Cao Abstract The analytical potential of a fluorescein analogue, 6-oxy-(N -succinimidyl acetate)-9-(2'-methoxycarbonyl) fluorescein (SAMF), for the first time synthesized in our laboratory, as a labeling reagent for the labeling and determination of amino compounds by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection was investigated. Biogenic monoamines and amino acids were chosen as model analytes to evaluate the analytical possibilities of this approach. The derivatization conditions and separation parameters for the biogenic amines were optimized in detail. The derivatization was performed at 30°C for 6 min in boric acid buffer (pH 8.0). The derivatives were baseline-separated in 15 min with 25 mM boric acid running buffer (pH 9.0), containing 24 mM SDS and 12.5% v/v acetonitrile. The concentration detection limit for biogenic amines reaches 8×10,11 mol·L,1 (signal-to-noise ratio = 3). The application of CE in the analysis of the SAMF-derivatized amino acids was also exploited. The optimal running buffer for amino acids suggested that weak acidic background electrolyte offered better separation than the basic one. The proposed method was applied to the determination of biogenic amines in three different beer samples with satisfying recoveries varying from 92.8% to 104.8%. Finally, comparison of several fluorescein-based probes for amino compounds was discussed. With good labeling reaction, excellent photostability, pH-independent fluorescence (pH 4,9), and the resultant widely suited running buffer pH, SAMF has a great prospect in the determination of amino compounds in CE. [source] Capillary electrophoresis-laser induced fluorescence-electrospray ionization-mass spectrometry: A case studyELECTROPHORESIS, Issue 7-8 2005Carolin Huhn Abstract The simultaneous hyphenation of capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection and electrospray ionization-mass spectrometry (ESI-MS) as a novel combined detection system for CE is presented. ,-Carbolines were chosen as model analytes with a forensic background. Nonaqueous CE as well as conventional CE with an aqueous buffer system are compared concerning efficiency and obtainable detection limits. The distance between the optical detection window and the sprayer tip was minimized by placing the optical cell directly in front of the electrospray interface. Similar separation efficiencies for both detection modes could thus be obtained. No significant peak-broadening induced by the MS interface was observed. The high fluorescence quantum yield and the high proton affinity of the model analytes investigated resulted in limits of detection in the fg (nmol/L) range for both detection methods. The analysis of confiscated ayahuasca samples and ethanolic plant extracts revealed complementary selectivities for LIF and MS detection. Thus, it is possible to improve peak identification of the solutes investigated by the use of these two detection principles. [source] Automated stir plate (bar) sorptive extraction coupled to high-performance liquid chromatography for the determination of polycyclic aromatic hydrocarbonsJOURNAL OF SEPARATION SCIENCE, JSS, Issue 14 2010Chunhe Yu Abstract Automated methods of PDMS/,-CD/divinylbenzene-coated stir plate sorptive extraction (SPSE) coupled to HPLC-fluorescence detector were reported for the first time. Three automation modes, static SPSE, circular flow SPSE and continuous flow SPSE, were evaluated and critically compared with stir bar sorptive extraction by using six polycyclic aromatic hydrocarbons as model analytes. It was found that the operable sample volume for circular flow SPSE and continuous flow SPSE was larger than that for static SPSE. Under the same extraction conditions, continuous flow SPSE exhibited the highest extraction efficiencies in all automated modes and manual stir bar sorptive extraction for the target compounds. Compared with the manual operation (approximately 5,10,min), automated SPSE required a relatively short time (117,180,s) to finish sampling, washing and sample loading. Besides being labor-saving and time-saving, automated SPSE has other advantages, such as no time limit and non-attended operation. The proposed continuous flow PDMS/,-CD/divinylbenzene-coated SPSE-HPLC-fluorescence detector was successfully applied to environmental water analysis. [source] |