Model's Ability (model + ability)

Distribution by Scientific Domains


Selected Abstracts


A Parsimonious Macroeconomic Model for Asset Pricing

ECONOMETRICA, Issue 6 2009
Fatih Guvenen
I study asset prices in a two-agent macroeconomic model with two key features: limited stock market participation and heterogeneity in the elasticity of intertemporal substitution in consumption (EIS). The model is consistent with some prominent features of asset prices, such as a high equity premium, relatively smooth interest rates, procyclical stock prices, and countercyclical variation in the equity premium, its volatility, and in the Sharpe ratio. In this model, the risk-free asset market plays a central role by allowing non-stockholders (with low EIS) to smooth the fluctuations in their labor income. This process concentrates non-stockholders' labor income risk among a small group of stockholders, who then demand a high premium for bearing the aggregate equity risk. Furthermore, this mechanism is consistent with the very small share of aggregate wealth held by non-stockholders in the U.S. data, which has proved problematic for previous models with limited participation. I show that this large wealth inequality is also important for the model's ability to generate a countercyclical equity premium. When it comes to business cycle performance, the model's progress has been more limited: consumption is still too volatile compared to the data, whereas investment is still too smooth. These are important areas for potential improvement in this framework. [source]


Simulating daily soil water under foothills fescue grazing with the soil and water assessment tool model (Alberta, Canada)

HYDROLOGICAL PROCESSES, Issue 15 2004
Emmanuel Mapfumo
Abstract Grazing is common in the foothills fescue grasslands and may influence the seasonal soil-water patterns, which in turn determine range productivity. Hydrological modelling using the soil and water assessment tool (SWAT) is becoming widely adopted throughout North America especially for simulation of stream flow and runoff in small and large basins. Although applications of the SWAT model have been wide, little attention has been paid to the model's ability to simulate soil-water patterns in small watersheds. Thus a daily profile of soil water was simulated with SWAT using data collected from the Stavely Range Sub-station in the foothills of south-western Alberta, Canada. Three small watersheds were established using a combination of natural and artificial barriers in 1996,97. The watersheds were subjected to no grazing (control), heavy grazing (2·4 animal unit months (AUM) per hectare) or very heavy grazing (4·8 AUM ha,1). Soil-water measurements were conducted at four slope positions within each watershed (upper, middle, lower and 5 m close to the collector drain), every 2 weeks annually from 1998 to 2000 using a downhole CPN 503 neutron moisture meter. Calibration of the model was conducted using 1998 soil-water data and resulted in Nash,Sutcliffe coefficient (EF or R2) and regression coefficient of determination (r2) values of 0·77 and 0·85, respectively. Model graphical and statistical evaluation was conducted using the soil-water data collected in 1999 and 2000. During the evaluation period, soil water was simulated reasonably with an overall EF of 0·70, r2 of 0·72 and a root mean square error (RMSE) of 18·01. The model had a general tendency to overpredict soil water under relatively dry soil conditions, but to underpredict soil water under wet conditions. Sensitivity analysis indicated that absolute relative sensitivity indices of input parameters in soil-water simulation were in the following order; available water capacity > bulk density > runoff curve number > fraction of field capacity (FFCB) > saturated hydraulic conductivity. Thus these data were critical inputs to ensure reasonable simulation of soil-water patterns. Overall, the model performed satisfactorily in simulating soil-water patterns in all three watersheds with a daily time-step and indicates a great potential for monitoring soil-water resources in small watersheds. Copyright © 2004 John Wiley & Sons, Ltd. [source]


A physical, mechanistic and fully coupled hillslope hydrology model

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2005
David A. Raff
Abstract We present the mathematical development and numerical solution of a new model of flow processes on an infiltrating hillslope. We also present validation and sample applications. The model is a distributed, mechanistic, physically based hillslope hydrologic model. The model describes the small-scale processes associated with overland flow, erosion, and sediment transport on an infiltrating surface and is capable of capturing small-scale variations in flow depth, flow velocities, interactive infiltration, erosion rates, and sediment transport. The model couples the fully two-dimensional hydrodynamic equations for overland flow, the one-dimensional Richards equation for infiltration, and a sediment detachment and transport model. Two simulations are presented highlighting the model's ability to capture and describe the interaction between precipitation, overland flow, erosion and infiltration at very small scales. Results of the two-dimensional simulations indicate the system of equations produces hillslopes possessing characteristics of self-organization as observed in real world systems. Copyright © 2005 John Wiley & Sons, Ltd. [source]


The stochastic implications of rent maximization: an application to stumpage rates for timber in British Columbia

JOURNAL OF APPLIED ECONOMETRICS, Issue 1 2004
M. Ryan Haley
We construct a model of rent-maximizing behaviour by a single seller of timber in the absence of a formal market, deriving the stochastic implications of rent maximization for timber prices (stumpage rates) when other input and output (lumber) prices are random. Subsequently, we examine the model's ability to describe monthly, time-series, stumpage-rate data from British Columbia, Canada between January 1979 and October 1999. Deviations of stumpage rates from their long-run trend are also structured by an error-correction model which suggests that between 13 and 20% of period-to-period changes in stumpage rates can be explained by an equilibrium adjustment term. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Mesoscale simulations of atmospheric flow and tracer transport in Phoenix, Arizona

METEOROLOGICAL APPLICATIONS, Issue 3 2006
Ge Wang
Abstract Large urban centres located within confining rugged or complex terrain can frequently experience episodes of high concentrations of lower atmospheric pollution. Metropolitan Phoenix, Arizona (United States), is a good example, as the general population is occasionally subjected to high levels of lower atmospheric ozone, carbon monoxide and suspended particulate matter. As a result of dramatic but continuous increase in population, the accompanying environmental stresses and the local atmospheric circulation that dominates the background flow, an accurate simulation of the mesoscale pollutant transport across Phoenix and similar urban areas is becoming increasingly important. This is particularly the case in an airshed, such as that of Phoenix, where the local atmospheric circulation is complicated by the complex terrain of the area. Within the study presented here, a three-dimensional time-dependent mesoscale meteorological model (HOTMAC) is employed for simulation of lower-atmospheric flow in Phoenix, for both winter and summer case-study periods in 1998. The specific purpose of the work is to test the model's ability to replicate the atmospheric flow based on the actual observations of the lower-atmospheric wind profile and known physical principles. While a reasonable general agreement is found between the model-produced flow and the observed one, the simulation of near-surface wind direction produces a much less accurate representation of actual conditions, as does the simulation of wind speed over 1,000 metres above the surface. Using the wind and turbulence output from the mesoscale model, likely particle plume trajectories are simulated for the case-study periods using a puff dispersion model (RAPTAD). Overall, the results provide encouragement for the efforts towards accurately simulating the mesoscale transport of lower-atmospheric pollutants in environments of complex terrain. Copyright © 2006 John Wiley & Sons, Ltd. [source]


A hybrid model of anaerobic E. coli GJT001: Combination of elementary flux modes and cybernetic variables

BIOTECHNOLOGY PROGRESS, Issue 5 2008
Jin Il Kim
Flux balance analysis (FBA) in combination with the decomposition of metabolic networks into elementary modes has provided a route to modeling cellular metabolism. It is dependent, however, on the availability of external fluxes such as substrate uptake or growth rate before estimates can become available of intracellular fluxes. The framework classically does not allow modeling of metabolic regulation or the formulation of dynamic models except through dynamic measurement of external fluxes. The cybernetic modeling approach of Ramkrishna and coworkers provides a dynamic framework for modeling metabolic systems because of its focus on describing regulatory processes based on cybernetic arguments and hence has the capacity to describe both external and internal fluxes. In this article, we explore the alternative of developing hybrid models combining cybernetic models for the external fluxes with the flux balance approach for estimation of the internal fluxes. The approach has the merit of the simplicity of the early cybernetic models and hence computationally facile while also providing detailed information on intracellular fluxes. The hybrid model of this article is based on elementary mode decomposition of the metabolic network. The uptake rates for the various elementary modes are combined using global cybernetic variables based on maximizing substrate uptake rates. Estimation of intracellular metabolism is based on its stoichiometric coupling with the external fluxes under the assumption of (pseudo-) steady state conditions. The set of parameters of the hybrid model was estimated with the aid of nonlinear optimization routine, by fitting simulations with dynamic experimental data on concentrations of biomass, substrate, and fermentation products. The hybrid model estimations were tested with FBA (based on measured substrate uptake rate) for two different metabolic networks (one is a reduced network which fixes ATP contribution to the biomass and maintenance requirement of ATP, and the other network is a more complex network which has a separate reaction for maintenance.) for the same experiment involving anaerobic growth of E. coli GJT001. The hybrid model estimated glucose consumption and all fermentation byproducts to better than 10%. The FBA makes similar estimations of fermentation products, however, with the exception of succinate. The simulation results show that the global cybernetic variables alone can regulate the metabolic reactions obtaining a very satisfactory fit to the measured fermentation byproducts. In view of the hybrid model's ability to predict biomass growth and fermentation byproducts of anaerobic E. coli GJT001, this reduced order model offers a computationally efficient alternative to more detailed models of metabolism and hence useful for the simulation of bioreactors. [source]