Home About us Contact | |||
Mouse Xenograft Model (mouse + xenograft_model)
Selected AbstractsEstablishment of a mouse xenograft model for mycosis fungoidesEXPERIMENTAL DERMATOLOGY, Issue 7 2004Sonja Thaler Abstract:, Mycosis fungoides (MF) is the most frequent variant of cutaneous T-cell lymphomas (CTCLs). MF primarily involves the skin initially with patches and plaques. In later stages, cutaneous tumors develop and tumor cells may spread to lymph nodes and finally to visceral sites. Here, we describe an animal model for MF in immune-deficient nude mice, using the CTCL cell line MyLa. Subcutaneous transplantation of MyLa cells leads to the formation of cutaneous tumors in 80% of the mice (50/60 total). Spread of tumor cells to visceral sites was detected by immunohistochemistry and polymerase chain reaction (PCR)-based detection of specific T-cell receptor-, rearrangement. MyLa cells were found circulating in the blood, lymph nodes, and in blood vessels of heart, kidney, lung, and liver. In lung and liver tissue, tumor cells presented perivascular invasion, but no large secondary tumors developed. The nude mouse model described here will be a valuable test system for new therapeutic approaches for the treatment of MF and opens the unique opportunity to study the disease in vivo. [source] The dual EGFR/HER-2 tyrosine kinase inhibitor lapatinib sensitizes colon and gastric cancer cells to the irinotecan active metabolite SN-38INTERNATIONAL JOURNAL OF CANCER, Issue 12 2009Melissa J. LaBonte Abstract Members of the human epidermal receptor (HER) family are frequently associated with aggressive disease and poor prognosis in multiple malignancies. Lapatinib is a dual tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR) and HER-2. This study evaluated the therapeutic potential of lapatinib, alone and in combination with SN-38, the active metabolite of irinotecan (CPT-11), in colon and gastric cancer cell lines. Concentration-dependent antiproliferative effects of both lapatinib and SN-38 were observed in all colon and gastric cancer cell lines tested but varied significantly between individual cell lines (lapatinib range 0.08,11.7 ,M; SN-38 range 3.6,256 nM). Lapatinib potently inhibited the growth of a HER-2 overexpressing gastric cancer cell line and demonstrated moderate activity in gastric and colon cancer cells with detectable HER-2 expression. The combination of lapatinib and SN-38 interacted synergistically to inhibit cell proliferation in all colon and gastric cancer cell lines tested. Cotreatment with lapatinib and SN-38 also resulted in enhanced cell cycle arrest and the induction of apoptosis with subsequent cellular pharmacokinetic analysis demonstrating that lapatinib promoted the increased intracellular accumulation and retention of SN-38 when compared to SN-38 treatment alone. Finally, the combination of lapatinib and CPT-11 demonstrated synergistic antitumor efficacy in the LoVo colon cancer mouse xenograft model with no apparent increase in toxicity compared to CPT-11 monotherapy. These results provide compelling preclinical rationale indicating lapatinib to be a potentially efficacious chemotherapeutic combination partner for irinotecan in the treatment of gastrointestinal carcinomas. © 2009 UICC [source] NF-,B inhibition triggers death of imatinib-sensitive and imatinib-resistant chronic myeloid leukemia cells including T315I Bcr-Abl mutantsINTERNATIONAL JOURNAL OF CANCER, Issue 2 2009Nadia Lounnas Abstract The Bcr-Abl inhibitor imatinib is the current first-line therapy for all newly diagnosed chronic myeloid leukemia (CML). Nevertheless, resistance to imatinib emerges as CML progresses to an acute deadly phase implying that physiopathologically relevant cellular targets should be validated to develop alternative therapeutic strategies. The NF-,B transcription factor that exerts pro-survival actions is found abnormally active in numerous hematologic malignancies. In the present study, using Bcr-Abl-transfected BaF murine cells, LAMA84 human CML cell line and primary CML, we show that NF-,B is active downstream of Bcr-Abl. Pharmacological blockade of NF-,B by the IKK2 inhibitor AS602868 prevented survival of BaF cells expressing either wild-type, M351T or T315I imatinib-resistant mutant forms of Bcr-Abl both in vitro and in vivo using a mouse xenograft model. AS602868 also affected the survival of LAMA84 cells and of an imatinib-resistant variant. Importantly, the IKK2 inhibitor strongly decreased in vitro survival and ability to form hematopoietic colonies of primary imatinib resistant CML cells including T315I cells. Our data strongly support the targeting of NF-,B as a promising new therapeutic opportunity for the treatment of imatinib resistant CML patients in particular in the case of T315I patients. The T315I mutation escapes all currently used Bcr-Abl inhibitors and is likely to become a major clinical problem as it is associated with a poor clinical outcome. © 2009 UICC [source] Prostate-specific antitumor activity by probasin promoter-directed p202 expression,MOLECULAR CARCINOGENESIS, Issue 3 2003Yong Wen Abstract p202, an interferon (IFN) inducible protein, arrests cell cycle at G1 phase leading to cell growth retardation. We previously showed that ectopic expression of p202 in human prostate cancer cells renders growth inhibition and suppression of transformation phenotype in vitro. In this report, we showed that prostate cancer cells with stable expression of p202 were less tumorigenic than the parental cells. The antitumor activity of p202 was further demonstrated by an ex vivo treatment of prostate cancer cells with p202 expression vector that showed significant tumor suppression in mouse xenograft model. Importantly, to achieve a prostate-specific antitumor effect by p202, we employed a prostate-specific probasin (ARR2PB) gene promoter to direct p202 expression (ARR2PB-p202) in an androgen receptor (AR),positive manner. The ARR2PB-p202/liposome complex was systemically administered into mice bearing orthotopic AR-positive prostate tumors. We showed that parenteral administration of an ARR2PB-p202/liposome preparation led to prostate-specific p202 expression and tumor suppression in orthotopic prostate cancer xenograft model. Furthermore, with DNA array technique, we showed that the expression of p202 was accompanied by downregulation of G2/M phase cell-cycle regulators, cyclin B, and p55cdc. Together, our results suggest that p202 suppresses prostate tumor growth, and that a prostate-specific antitumor effect can be achieved by systemic administration of liposome-mediated delivery of ARR2PB-p202. © 2003 Wiley-Liss, Inc. [source] The dielectric properties of cancerous tissues in a nude mouse xenograft modelBIOELECTROMAGNETICS, Issue 7 2004Done-Sik Yoo Abstract The dielectric properties of various cancers, namely brain tumor, breast cancer, gastric carcinoma, and colon cancer, were measured in the frequency range of 500 MHz to 5 GHz. Cancers were cultivated applying the xenograft model of growing human cancerous tissues using the specific pathogen free, homo inbred mouse (a nude mouse). The complex permittivity was measured using an open-ended coaxial probe (HP85070B) and a computer controlled network analyzer (HP8510C). For the measurement of the dielectric properties, a total of 58 xenografted specimens was used. The results showed that measured values of complex permittivity for all four cancerous tissues were similar, with little variations over the frequency range used. It might be agreed that components and characteristics of different cancerous tissues would be similar despite their different occurrences in the human body. It is necessary to investigate this result further. Bioelectromagnetics 25:492,497, 2004. © 2004 Wiley-Liss, Inc. [source] Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cellsBRITISH JOURNAL OF HAEMATOLOGY, Issue 6 2007Teru Hideshima Summary Akt mediates growth and drug resistance in multiple myeloma (MM) cells in the bone marrow (BM) microenvironment. We have shown that a novel Akt inhibitor Perifosine induces significant cytotoxicity in MM cells in the BM milieu. This study further delineated molecular mechanisms whereby Perifosine triggered cytotoxicity in MM cells. Neither the intensity of Jun NH2 -terminal kinase phosphorylation nor caspase/poly (ADP-ribose) polymerase cleavage correlated with Perifosine-induced cytotoxicity in MM.1S, INA6, OPM1 and OPM2 MM cells. However, survivin, which regulates caspase-3 activity, was markedly downregulated by Perifosine treatment, without changes in other anti-apoptotic proteins. Downregulation of survivin by siRNA significantly inhibited OPM1 MM cell growth, confirming that survivin mediates MM cell survival. Perifosine significantly downregulated both function and protein expression of ,-catenin. Co-culture with BM stromal cells (BMSCs) upregulated both ,-catenin and survivin expression in MM cells, which was blocked by Perifosine. Importantly, Perifosine treatment also downregulated survivin expression in human MM cells grown in vivo in a severe combined immunodeficient mouse xenograft model. Finally, Perifosine inhibited bortezomib-induced upregulation of survivin, associated with enhanced cytotoxicity of combined bortezomib and Perifosine treatment. These preclinical studies provide the framework for clinical trials of bortezomib with Perifosine to improve patient outcome in MM. [source] In vitro and in vivo antineoplastic activity of a novel bromopyrrole and its potential mechanism of actionBRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2010Sheng Xiong Background and purpose:, Many bromopyrrole compounds have been reported to have in vitro antineoplastic activity. In a previous study, we isolated N-(4, 5-dibromo-pyrrole-2-carbonyl)-L-amino isovaleric acid methyl ester (B6) from marine sponges. Here, we investigated the in vitro and in vivo antineoplastic activity of B6 and its potential mechanism. Experimental approach:, The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine the in vitro antineoplastic activity of B6. Flow cytometry, western blot analysis and morphological observations were used to investigate its mechanism of action. A mouse xenograft model was used to determine its in vivo activity. Key results:, B6 inhibited the proliferation of various human cancer cells in vitro, with highest activity on LOVO and HeLa cells. B6 also exhibited significant growth inhibitory effects in vivo in a xenograft mouse model. Acute toxicity analysis suggested that B6 has low toxicity. B6-treated cells arrested in the G1 phase of the cell cycle and had an increased fraction of sub-G1 cells. In addition, the population of Annexin V-positive/propidium iodide-negative cells increased, indicating the induction of early apoptosis. Indeed, B6-treated cells exhibited morphologies typical of cells undergoing apoptosis. Western blotting showed cleaved forms of caspase-9 and caspase-3 in cells exposed to B6. Moreover, B6-promoted Ca2+ release and apoptosis was associated with elevated intracellular Ca2+concentration. Conclusions and implications:, B6 has significant antineoplastic activity in vitro as well as in vivo. It inhibits tumour cell proliferation by arresting the cell cycle and inducing apoptosis. With its low toxicity, B6 represents a promising antineoplastic, primary compound. [source] Acyl-CoA synthetase as a cancer survival factor: its inhibition enhances the efficacy of etoposideCANCER SCIENCE, Issue 8 2009Tetsuo Mashima Lipid metabolism is often elevated in cancer cells and plays an important role in their growth and malignancy. Acyl-CoA synthetase (ACS), which converts long-chain fatty acids to acyl-CoA, is overexpressed in various types of cancer. However, the role of ACS in cancer remains unknown. Here, we found that ACS enzyme activity is required for cancer cell survival. Namely, the ACS inhibitor Triacsin c induced massive apoptosis in glioma cells while this cell death was completely suppressed by overexpression of ACSL5, the Triacsin c,resistant ACS isozyme, but not by overexpression of a catalytically inactive ACSL5 mutant. ACS inhibition by Triacsin c markedly potentiated the Bax-induced intrinsic apoptotic pathway by promoting cytochrome c release and subsequent caspase activation. These effects were abrogated by ACSL5 overexpression. Correspondingly, ACS inhibition synergistically potentiated the glioma cell death induced by etoposide, a well-known activator of apoptosis. Furthermore, in a nude mouse xenograft model, Triacsin c at a non-toxic dose enhanced the antitumor efficacy of a low-dose chemotherapy with etoposide. These results indicate that ACS is an apoptosis suppressor and that ACS inhibition could be a rational strategy to amplify the antitumor effect of etoposide. (Cancer Sci 2009) [source] Activity of triptolide against human mast cells harboring the kinase domain mutant KITCANCER SCIENCE, Issue 7 2009Yanli Jin Gain-of-function mutations of the receptor tyrosine kinase KIT can cause systemic mastocytosis (SM) and gastrointestinal stromal tumors. Most of the constitutively active KIT can be inhibited by imatinib; D816V KIT cannot. In this study, we investigated the activity of triptolide, a diterpenoid isolated from the Chinese herb Tripterygium wilfordii Hook. f., in cells expressing mutant KIT, including D816V KIT. Imatinib-sensitive HMC-1.1 cells harboring the mutation V560G in the juxtamembrane domain of KIT, imatinib-resistant HMC-1.2 cells harboring both V560G and D816V mutations, and murine P815 cells, were treated with triptolide, and analyzed in terms of growth, apoptosis, and signal transduction. The in vivo antitumor activity was evaluated by using the nude mouse xenograft model. Our results demonstrated that triptolide potently inhibits the growth of both human and murine mast cells harboring not only imatinib-sensitive KIT mutation but also imatinib-resistant D816V KIT. Triptolide markedly inhibited KIT mRNA levels and strikingly reduced the levels of phosphorylated and total Stat3, Akt, and Erk1/2, downstream targets of KIT. Triptolide triggered apoptosis by inducing depolarization of mitochondrial potential and release of cytochrome c, downregulation of Mcl-1 and XIAP. Furthermore, triptolide significantly abrogated the growth of imatinib-resistant HMC-1.2 cell xenografts in nude mice and decreased KIT expression in xenografts. Our data demonstrate that triptolide inhibits imatinib-resistant mast cells harboring D816V KIT. Further investigation of triptolide for treatment of human neoplasms driven by gain-of-function KIT mutations is warranted. (Cancer Sci 2009; 100: 1335,1343) [source] |