Mouse Strains (mouse + strain)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Mouse Strains

  • different mouse strain
  • inbred mouse strain
  • susceptible mouse strain
  • transgenic mouse strain


  • Selected Abstracts


    Sleep Loss Induces Differential Response Related To Genotoxicity in Multiple Organs of Three Different Mice Strains

    BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2010
    Vanessa Kahan
    Swiss, C57BL/6j and hairless (HRS/j) mice were submitted to PSD by the multiple platform technique for 72 hr, and DNA damage was evaluated. Statistically significant differences in DNA damage were found in blood cells of the Swiss mice strain when compared to negative controls. By contrast, no statistically significant differences were found in the C57BL/6j or hairless mice strains. With regard to the liver, extensive genotoxic effects were found in the Swiss strain. The hairless and C57BL/6j mice strains did not show any signs of genotoxocity in this organ. The same lack of effect was noted in kidney and heart cells of all strains evaluated. In conclusion, our results reveal that sleep deprivation exerted genetic damage in the form of DNA breakage in blood and liver cells of the Swiss mice strain only. This type of approach should be considered when studying noxious activities on genetic apparatus induced by sleep deprivation in mice since the Swiss strain is more suitable for this purpose. [source]


    Mouse Strain and Injection Site are Crucial for Detecting Linked Suppression in Transplant Recipients by Trans-Vivo DTH Assay

    AMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2007
    W.J. Burlingham
    Chemokine-driven accumulation of lymphocytes, mononuclear and polymorphonuclear proinflammatory cells in antigenic tissue sites is a key feature of several types of T-cell-dependent autoimmunity and transplant rejection pathology. It is now clear that the immune system expends considerable energy to control this process, exemplified by the sequential layers of regulatory cell input, both innate and adaptive, designed to prevent a classical Type IV or ,delayed-type' hypersensitivity (DTH) reaction from occurring in the visual field of the eye. Yet, despite an abundance of in vitro assays currently available to the human T-cell immunologist, none of them adequately models the human DTH response and its various control features. The theme of this article is that it is relatively easy to model the effector side of the human DTH response with xenogeneic adoptive transfer models. However, we show that in order to detect inhibition of a recall DTH in response to colocalized donor antigen (linked suppression),a characteristic feature of peripheral tolerance to an organ transplant,both the challenge site and the immunocompetence of the mouse adoptive host are critical factors limiting the sensitivity of the trans-vivo DTH test. [source]


    Withdrawal Severity After Chronic Intermittent Ethanol in Inbred Mouse Strains

    ALCOHOLISM, Issue 9 2010
    Pamela Metten
    Background:, To study withdrawal, ethanol is usually administered chronically without interruption. However, interest has recurred in models of episodic exposure. Increasing evidence suggests that chronic intermittent exposure to ethanol leads to a sensitization effect in both withdrawal severity and ethanol consumption. The goal of the present study was to examine mouse inbred strain differences in withdrawal severity following chronic intermittent exposure using the handling-induced convulsion as the behavioral endpoint. We also sought to compare the withdrawal responses of inbred strains across acute, chronic continuous, and chronic intermittent exposure regimens. Methods:, Male mice from 15 standard inbred strains were exposed to ethanol vapor for 16 hours each day for 3 days and removed to an air chamber during the intervening 8 hours. Mice in the control groups were handled the same, except that they were exposed only to air. Daily blood ethanol concentrations were averaged for each mouse to estimate total dose of ethanol experienced. Results:, Across strains, mice had an average daily blood ethanol concentration (BEC) of 1.45 ± 0.02 mg/ml and we restricted the range of this value to 1.00,2.00 mg/ml. To evaluate strain differences, we divided data into two dose groups based on BEC, low dose (1.29 ± 0.1 mg/ml) and high dose (1.71 ± 0.02 mg/ml). After the third inhalation exposure, ethanol-exposed and air-exposed groups were tested hourly for handling-induced convulsions for 10 hour and at hour 24 and 25. Strains differed markedly in the severity of withdrawal (after subtraction of air control values) in both dose groups. Conclusion:, The chronic intermittent exposure paradigm is sufficient to elicit differential withdrawal responses across nearly all strains. Data from the high-dose groups correlated well with withdrawal data derived from prior acute (single high dose) and chronic continuous (for 72 hours) ethanol withdrawal studies, supporting the influence of common genes on all three responses. [source]


    Strain Differences in Behavioral Inhibition in a Go/No-go Task Demonstrated Using 15 Inbred Mouse Strains

    ALCOHOLISM, Issue 8 2010
    Noah R. Gubner
    Background:, High levels of impulsivity have been associated with a number of substance abuse disorders including alcohol abuse. Research has not yet revealed whether these high levels predate the development of alcohol abuse. Methods:, The current study examined impulsivity in 15 inbred strains of mice (A/HeJ, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6J, C57L/J, C58/J, CBA/J, DBA/1J, DBA/2J, NZB/B1NJ, PL/J, SJL/J, SWR/J, and 129P3/J) using a Go/No-go task, which was designed to measure a subject's ability to inhibit a behavior. Numerous aspects of response to ethanol and other drugs of abuse have been examined in these strains. Results:, There were significant strain differences in the number of responses made during the No-go signal (false alarms) and the extent to which strains responded differentially during the Go and No-go signals (d,). The rate of responding prior to the cue did not differ among strains, although there was a statistically significant correlation between false alarms and precue responding that was not related to basal activity level. Interstrain correlations suggested that false alarms and rate of responding were associated with strain differences in ethanol-related traits from the published literature. Conclusions:, The results of this study do support a link between innate level of impulsivity and response to ethanol and are consistent with a genetic basis for some measures of behavioral inhibition. [source]


    Cerebellar Gene Expression Profiling and eQTL Analysis in Inbred Mouse Strains Selected for Ethanol Sensitivity

    ALCOHOLISM, Issue 9 2005
    Erik J. MacLaren
    Background: Inbred Long-Sleep (ILS) and Inbred Short-Sleep (ISS) mice exhibit striking differences in a number of alcohol and drug related behaviors. This study examined the expression levels of more than 39,000 transcripts in these strains in the cerebellum, a major target of ethanol's actions in the CNS, to find differentially expressed (DE) candidate genes for these phenotypes. Methods: Genes that were differentially expressed between the strains were identified using oligonucleotide arrays as well as complimentary DNA arrays. Sequence alignment was used to locate DE genes in the mouse genome assembly. In silico expression QTL (eQTL) mapping was used to identify chromosomal regions likely to control the transcription level of DE genes, and the EASE program identified overrepresented functional themes. The genomic region immediately upstream of the cyclase associated protein homolog 1 (Cap1) gene was directly sequenced from PCR products. Results: Nearly 300 genes were identified as differentially expressed between the cerebella of ILS and ISS. These genes and their corresponding eQTLs map to genomic regions linked to several phenotypes that differ between the ILS and ISS strains, including ethanol preference and cocaine-induced locomotor activation on Chromosomes 4 and 7 respectively. Eight genes were cross-platform validated, four of which are more highly expressed in ILS cerebellum. Three SNPs, one of which disrupts a predicted Sp1 binding site, were found in the upstream region of Cap1, a strong candidate for influencing ethanol phenotypes. Conclusions: Many of these DE genes are candidates to influence ethanol and drug regulated phenotypes because they either map to ethanol related QTLs in the genome or are linked to them through eQTL mapping. Genes involved in calcium ion binding and transcriptional regulation are overrepresented and therefore these gene classes may influence ethanol behaviors in mice and humans. [source]


    Gene Coding Variant in Cas1 Between the C57BL/6J and DBA/2J Inbred Mouse Strains: Linkage to a QTL for Ethanol-Induced Locomotor Activation

    ALCOHOLISM, Issue 1 2002
    Yan Xu
    Background: Among some (e.g., DBA/2J or D2) but not all (C57BL/6J or B6) inbred strains of mice, ethanol has a marked psychostimulant effect. Intercrosses formed from the D2 and B6 strains have been used to detect quantitative trait loci (QTLs) for this phenotype. The major QTL is found at the mid-region of chromosome 2 (Demarest et al., 1999). This QTL has also been detected in heterogeneous stock mice (Demarest et al., 2001). A potential candidate gene in this region is Cas1, which codes for catalase. The current studies were conducted to determine (a) if there was difference in the open reading frame (ORF) of Cas1 between the D2 and B6 strains; (b) if a difference was found, was it likely that the difference had functional effects; and (c) if it could be established that Cas1 meets the criteria for QTL to gene. Methods: The open reading frame (ORF) of Cas1 was sequenced in both the D2 and B6 mouse strains. A single polymorphism was found between the strains (see below); the strain distribution pattern for this polymorphism was determined in the 36 strains of the B6XD2 (BXD) recombinant inbred (RI) series. These data were used to map the position of Cas1 as described by Cudmore et al. (1999). Results: The only difference between the D2 and B6 strains in the coding region was found at #349, G,>A. This will result in a difference in the amino acid sequence between the strains at amino acid #117,alanine is found in the D2 strain while threonine is found in the B6 strain. The RI strain distribution pattern for this polymorphism was used to determine the relative placement of Cas1. The estimate suggests that Cas1 is flanked by D2Mit12 and D2Mit43 and relative to D2Mit94 (which was set at 47 cM), Cas1 is located at approximately 57 cM, confirming previous estimates (see http://www.jax.org). Conclusions: Pharmacological data (Correa et al., 2001) strongly support the idea that Cas1 meets the criteria for QTL to gene. However, based on the mapping data, Cas1 is clearly not included in the QTL for heterogeneous stock mice. Finally, other genetic data suggest that the polymorphism is not sufficient to generate the QTL. [source]


    Nicotinic acetylcholine receptor expression in the hippocampus of 27 mouse strains reveals novel inhibitory circuitry

    HIPPOCAMPUS, Issue 8 2008
    Lorise C. Gahring
    Abstract Mouse strains are well-characterized to exhibit differences in their physiological and behavioral responses to nicotine. This report examines the expression of the high-affinity nicotine binding receptor subunit, neuronal nicotinic receptor subunit alpha4 (nAChR,4), in the dorsal hippocampus of 27 inbred mouse strains. Multiple differences among mouse strains in the cellular expression of nAChR,4 between subregions of the hippocampal field are evident. Differences that we describe in the expression of nAChR,4 suggest mouse strains of diverse genetic origin could exhibit significant variation in how this receptor contributes to modulating intrahippocampal circuitry. These findings define a genetic frame-work in which the strain-specific responses to nicotine include underlying contributions by the varied anatomical context in which nAChRs are expressed. © 2008 Wiley-Liss, Inc. [source]


    A Polymorphism in the ,4 Nicotinic Receptor Gene (Chrna4) Modulates Enhancement of Nicotinic Receptor Function by Ethanol

    ALCOHOLISM, Issue 5 2003
    Christopher M. Butt
    Background: Several studies indicate that ethanol enhances the activity of ,4,2 nicotinic acetylcholine receptors (nAChR). Our laboratory has identified a polymorphism in the ,4 gene that results in the substitution of an alanine (A) for threonine (T) at amino acid position 529 in the second intracellular loop of the ,4 protein. Mouse strains expressing the A variant have, in general, greater nAChR-mediated 86Rb+ efflux in response to nicotine than strains with the T variant. However, the possibility of the polymorphism modulating the effects of ethanol on the 86Rb+ efflux response has not been investigated. Methods: We have used the 86Rb+ efflux method to study the acute effects of ethanol on the function of the ,4,2 nAChR in the thalamus in six different mouse strains. Experiments were also performed on tissue samples taken from F2 intercross animals. The F2 animals were derived from A/J mice crossed with a substrain of C57BL/6J mice that carried a null mutation for the gene encoding the ,2 nAChR subunit. Results: In strains carrying the A polymorphism (A/J, AKR/J, C3H/Ibg), coapplication of ethanol (10,100 mM) with nicotine (0.03,300 ,M) increased maximal ion flux when compared with nicotine alone with no effect on agonist potency. In contrast, ethanol had little effect on the nicotine concentration-response curve in tissue prepared from strains carrying the T polymorphism (Balb/Ibg, C57BL/6J, C58/J). Experiments with the F2 hybrids demonstrated that one copy of the A polymorphism was sufficient to produce a significant enhancement of nAChR function by ethanol (50 mM) in animals that were also ,2 +/+. Ethanol had no effect on nicotine concentration-response curves in T/T ,2 +/+ animals. Conclusions: The results suggest that the A/T polymorphism influences the initial sensitivity of the ,4,2 nAChR to ethanol. [source]


    Lowered albumin extravasation rate in heart but not in other organs in ,3-integrin-deficient mice

    ACTA PHYSIOLOGICA, Issue 4 2009
    Ø. S. Svendsen
    Abstract Aim:, The vascular protein permeability is dependent on the integrity of the vascular wall. The heart capillaries in male mice lacking ,3 integrins have an immature phenotype. Previously, we have demonstrated a role for ,v,3 integrins in control of interstitial fluid pressure (Pif) and thereby in the fluid flux during inflammation. We wanted to explore a possible role for ,v,3 integrins in controlling capillary protein permeability during control situation and inflammation. Methods:, We performed double-tracer and microdialysis experiments on ,3-integrin-deficient mice and wild type control mice. We also measured blood pressure and heart rate in the two mice strains. Results:, We found reduced albumin extravasation (during 25 min) in the heart capillaries (0.053 ± 0.003 vs. 0.087 ± 0.009 mL g,1 dw, P < 0.05), and an increased cardiac mass/body weight (5.3 × 10,3 ± 0.3 × 10,3 vs. 3.8 × 10,3 ± 0.1 × 10,3, P < 0.01) in the ,3-integrin-deficient mice (n = 6) compared with the controls (n = 6). Heart rate and blood pressure were the same in mice with and without ,3-integrins. No difference in permeability was found in other tissues studied, or under local inflammation. Conclusion:, These results show a function for the ,v,3 integrin in the regulation of protein permeability, selective for the heart capillaries. [source]


    Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles

    FEBS JOURNAL, Issue 4 2005
    Possible role in rescuing cellular energy homeostasis
    Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single- and double CK-knock-out mice strains (cytosolic (M-CK,/,), mitochondrial (Mi-CK,/,) and double knock-out (MiM-CK,/,), respectively). Maximal ADP-stimulated oxygen consumption flux (State3 Vmax; nmol O2·mg mitochondrial protein,1·min,1) and ADP affinity (; µm) were determined by respirometry. State 3 Vmax and of M-CK,/, and MiM-CK,/, gastrocnemius mitochondria were twofold higher than those of WT, but were unchanged for Mi-CK,/,. For mutant cardiac mitochondria, only the of mitochondria isolated from the MiM-CK,/, phenotype was different (i.e. twofold higher) than that of WT. The implications of these adaptations for striated muscle function were explored by constructing force-flow relations of skeletal muscle respiration. It was found that the identified shift in affinity towards higher ADP concentrations in MiM-CK,/, muscle genotypes may contribute to linear mitochondrial control of the reduced cytosolic ATP free energy potentials in these phenotypes. [source]


    Alloantigen gene therapy for head and neck cancer: Evaluation of animal models,

    HEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 4 2003
    Lyon L. Gleich MD
    Abstract Background. Human trials of alloantigen gene therapy, using the class I major histocompatibility complex (MHC) HLA-B7, have demonstrated the potential efficacy of this treatment for head and neck cancer. Its mechanism remains unclear. An immune-competent mouse model of MHC gene therapy to test factors potentially important to the tumor response is needed. Methods. Two cell lines were used, B4B8 cells that grow in Balb/c mice and SCC-VII cells that grow in C3H mice. The mouse MHC H2-Kb was used as the therapeutic gene, because it is an alloantigen to both mice strains. Plasmids that encode the H2-Kb cDNA were prepared, and the cell lines were transfected. Mice were injected subcutaneously with naive cells to determine the tumor kinetics and serve as controls. Mice were injected with H2-Kb transfected cells and tumor growth was compared with controls. Mice that did not grow tumor were rechallenged with naive cells to assess for tumor immunity. Mice were injected with transfected and naive cells admixed to determine whether the concentration of the alloantigen is important. Results. B4B8 tumors grew slowly, whereas SCC-VII tumors grew rapidly. Transfection with H2-Kb plasmid prevented or inhibited tumor growth of both the B4B8 and SCC-VII tumors. This growth inhibition was independent of the number of cells injected. In the mice that did not grow tumor, tumor immunity was demonstrated after challenge with naive cells in both models. There was no relationship between induction of immunity and the timing of the challenge or initial cell quantity. The mice injected with a mixture of naive and transfected cells grew tumor, although growth was delayed in the B4B8 model. Conclusions. The results demonstrate that the two mouse models can serve as a rapid and slow growing tumor model of alloantigen gene therapy. In addition, it was noted that initial tumor cell number is not a significant factor for predicting tumor response and demonstrated that in both of these models alloantigen gene therapy results in significant antitumor immunity. © 2003 Wiley Periodicals, Inc. Head Neck 25: 274,279, 2003 [source]


    Evidence of immune system melatonin production by two pineal melatonin deficient mice, C57BL/6 and Swiss strains

    JOURNAL OF PINEAL RESEARCH, Issue 1 2009
    Araceli Gómez-Corvera
    Abstract:, We evaluated two pineal melatonin deficient mice described in the literature, i.e., C57BL/6 and Swiss mice, as animal models for studying the immunomodulatory action of melatonin. Plasma melatonin levels in C57BL/6 and Swiss strains were detectable, but lower than levels in control C3H/HENHSD mice. Since these strains are suppose to be pineal melatonin deficient an extrapineal melatonin synthesis may contribute to plasma levels. Regarding cells and tissues from the immune system, all of them were found to synthesize melatonin although at low levels. N-acetyltransferase (AANAT) mRNA was also amplified in order to analyze the alternative splicing between exons 3,4 described for pineal C57BL/6 mice which generates an inclusion of a pseudoexon of 102 bp. For the pineal gland, both the wild type and the mutant isoforms were present in all mice strains although in different proportions. We observed a predominant wild type AANAT mature RNA in thymus, spleen and bone marrow cells. Peripheral blood mononuclear cells (PBMC) culture shown an evident AANAT amplification in all strains studied. Although the bands detected were less intense in melatonin deficient mice, the amplification almost reached the control cell intensity after stimulation with phytohemaglutinin (PHA). In summary, melatonin detection and AANAT mRNA expression in inbred and outbred mice clearly indicate that different cells and tissues from the immune system are able to synthesize melatonin. Thus, the pineal defect seems not to be generalized to all tissues, suggesting that other cells may compensate the low pineal melatonin production contributing to the measurable plasma melatonin level. [source]


    Sleep Loss Induces Differential Response Related To Genotoxicity in Multiple Organs of Three Different Mice Strains

    BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2010
    Vanessa Kahan
    Swiss, C57BL/6j and hairless (HRS/j) mice were submitted to PSD by the multiple platform technique for 72 hr, and DNA damage was evaluated. Statistically significant differences in DNA damage were found in blood cells of the Swiss mice strain when compared to negative controls. By contrast, no statistically significant differences were found in the C57BL/6j or hairless mice strains. With regard to the liver, extensive genotoxic effects were found in the Swiss strain. The hairless and C57BL/6j mice strains did not show any signs of genotoxocity in this organ. The same lack of effect was noted in kidney and heart cells of all strains evaluated. In conclusion, our results reveal that sleep deprivation exerted genetic damage in the form of DNA breakage in blood and liver cells of the Swiss mice strain only. This type of approach should be considered when studying noxious activities on genetic apparatus induced by sleep deprivation in mice since the Swiss strain is more suitable for this purpose. [source]


    Electroconvulsive seizure thresholds and kindling acquisition rates are altered in mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions

    EPILEPSIA, Issue 7 2009
    James F. Otto
    Summary Purpose:, Benign familial neonatal convulsions (BFNC) is caused by mutations in the KCNQ2 and KCNQ3 genes, which encode subunits of the M-type potassium channel. The purpose of this study was to examine the effects of orthologous BFNC-causing mutations on seizure thresholds and the acquisition of corneal kindling in mice with heterozygous expression of the mutations. Methods:, The effects of the Kcnq2 gene A306T mutation and the Kcnq3 gene G311V mutation were determined for minimal clonic, minimal tonic hindlimb extension, and partial psychomotor seizures. The rate of corneal kindling acquisition was also determined for Kcnq2 A306T and Kcnq3 G311V mice. Results:, Seizure thresholds were significantly altered relative to wild-type animals in the minimal clonic, minimal tonic hindlimb extension, and partial psychomotor seizure models. Differences in seizure threshold were found to be dependent on the mutation expressed, the seizure testing paradigm, the genetic background strain, and the gender of the animal. Mutations in Kcnq2 and Kcnq3 were associated with an increased rate of corneal kindling. In the Kcnq2 A306T mice, an increased incidence of death occurred during and immediately following the conclusion of the kindling acquisition period. Conclusions:, These results suggest that genetic alterations in the subunits that underlie the M-current and cause BFNC alter seizure susceptibility in a sex-, mouse strain-, and seizure-test dependent manner. Although the heterozygous mice do not appear to have spontaneous seizures, the increased seizure susceptibility and incidence of death during and after kindling suggests that these mutations lead to altered excitability in these animals. [source]


    Anticonvulsant profile and teratogenicity of 3,3-dimethylbutanoylurea: A potential for a second generation drug to valproic acid

    EPILEPSIA, Issue 7 2008
    Jakob Avi Shimshoni
    Summary Purpose: The purpose of this study was to evaluate the anticonvulsant activity and teratogenic potential of branched aliphatic acylureas represented by isovaleroylurea (IVU), pivaloylurea (PVU) and 3,3-dimethylbutanoylurea (DBU), as potential second-generation drugs to valproic acid (VPA). Methods: The anticonvulsant activity of IVU, PVU, and DBU was determined in mice and rats utilizing the maximal electroshock seizure (MES) and the pentylenetetrazole (scMet) tests. The ability of DBU to block electrical-, or chemical-induced seizures was further examined in three acute seizure models: the psychomotor 6 Hz model, the bicuculline and picrotoxin models and one model of chronic epilepsy (i.e., the hippocampal kindled rat model). The induction of neural tube defects (NTDs) by IVU, PVU, and DBU was evaluated after i.p. administration at day 8.5 of gestation to a mouse strain highly susceptible to VPA-induced teratogenicity. The pharmacokinetics of DBU was studied following i.v. administration to rats. Results: DBU emerged as the most potent compound having an MES-ED50of 186 mg/kg (mice) and 64 mg/kg (rats) and an scMet-ED50of 66 mg/kg (mice) and 26 mg/kg (rats). DBU underwent further evaluation in the hippocampal kindled rat (ED50= 35 mg/kg), the psychomotor 6 Hz mouse model (ED50= 80 mg/kg at 32 mA and ED50= 133 mg/kg at 44 mA), the bicuculline- and picrotoxin-induced seizure mouse model (ED50= 205 mg/kg and 167 mg/kg, respectively). In contrast to VPA, DBU, IVU, and PVU did not induce a significant increase in NTDs as compared to control. DBU was eliminated by metabolism with a half-life of 4.5 h. Conclusions: DBU's broad spectrum and potent anticonvulsant activity, along with its high safety margin and favorable pharmacokinetic profile, make it an attractive candidate to become a new, potent, and safe AED. [source]


    Anticonvulsant Profile and Teratogenicity of N -methyl-tetramethylcyclopropyl Carboxamide: A New Antiepileptic Drug

    EPILEPSIA, Issue 2 2002
    Nina Isoherranen
    Summary: ,Purpose: The studies presented here represent our efforts to investigate the anticonvulsant activity of N -methyl-tetramethylcyclopropyl carboxamide (M-TMCD) and its metabolite tetramethylcyclopropyl carboxamide (TMCD) in various animal (rodent) models of human epilepsy, and to evaluate their ability to induce neural tube defects (NTDs) and neurotoxicity. Methods: The anticonvulsant activity of M-TMCD and TMCD was determined after intraperitoneal (i.p.) administration to CF#1 mice, and either oral or i.p. administration to Sprague,Dawley rats. The ability of M-TMCD and TMCD to block electrical-, chemical-, or sensory-induced seizures was examined in eight animal models of epilepsy. The plasma and brain concentrations of M-TMCD and TMCD were determined in the CF#1 mice after i.p. administration. The induction of NTDs by M-TMCD and TMCD was evaluated after a single i.p. administration at day 8.5 of gestation in a highly inbred mouse strain (SWV) that is susceptible to valproic acid,induced neural tube defects. Results: In mice, M-TMCD afforded protection against maximal electroshock (MES)-induced, pentylenetetrazol (Metrazol)-induced, and bicuculline-induced seizures, as well as against 6-Hz "psychomotor" seizures and sound-induced seizures with ED50 values of 99, 39, 81, 51, and 10 mg/kg, respectively. In rats, M-TMCD effectively prevented MES- and Metrazol-induced seizures and secondarily generalized seizures in hippocampal kindled rats (ED50 values of 82, 45, and 39 mg/kg, respectively). Unlike M-TMCD, TMCD was active only against Metrazol-induced seizures in mice and rats (ED50 values of 57 and 52 mg/kg, respectively). Neither M-TMCD nor TMCD was found to induce NTDs in SWV mice. Conclusions: The results obtained in this study show that M-TMCD is a broad-spectrum anticonvulsant drug that does not induce NTDs and support additional studies to evaluate its full therapeutic potential. [source]


    CCR6 has a non-redundant role in the development of inflammatory bowel disease

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2003
    Rosa Varona
    Abstract Antigen-loaded tissues such as the intestinal mucosa must simultaneously elicit appropriate immune response to innocuous bacteria and food proteins, and to potentially harmful antigens. Impairment of the mechanisms controlling this response may mediate the excessive immune reaction that can lead to tissue destruction and inflammatory intestinal diseases, including inflammatory bowel disease. The intestinal epithelium influences local immune responses through the expression of adhesion molecules, costimulatory factors, cytokines and chemokines. CCL20, a ,-chemokine expressed in epithelia from colon and other intestinal tissue, plays a role in immune responses of intestinal mucosa, as deduced from the defects in intestinal leukocyte homeostasis shown by mice lacking CCR6, the CCL20 receptor. We studied the response of CCR6-deficient mice in two models of inflammatory bowel disease. The data show that absence of CCR6 resulted in less severe intestinal pathology in animals treated with dextran sodium sulfate. Conversely, CCR6 deficiency alters leukocyte homeostasis and the cytokine environment in the intestinal mucosa; these changes are sufficient to confer susceptibility to trinitrobenzene sulfonic acid-induced intestinal inflammation in the otherwise resistant C57BL/6J mouse strain. These results suggest that the CCR6/CCL20 axis has a critical, non-redundant role in the in vivo control of immune responses in the intestine. [source]


    Impaired Pavlovian fear extinction is a common phenotype across genetic lineages of the 129 inbred mouse strain

    GENES, BRAIN AND BEHAVIOR, Issue 8 2009
    M. Camp
    Fear extinction is impaired in psychiatric disorders such as post-traumatic stress disorder and schizophrenia, which have a major genetic component. However, the genetic factors underlying individual variability in fear extinction remain to be determined. By comparing a panel of inbred mouse strains, we recently identified a strain, 129S1/SvImJ (129S1), that exhibits a profound and selective deficit in Pavlovian fear extinction, and associated abnormalities in functional activation of a key prefrontal-amygdala circuit, as compared with C57BL/6J. The first aim of the present study was to assess fear extinction across multiple 129 substrains representing the strain's four different genetic lineages (parental, steel, teratoma and contaminated). Results showed that 129P1/ReJ, 129P3/J, 129T2/SvEmsJ and 129X1/SvJ exhibited poor fear extinction, relative to C57BL/6J, while 129S1 showed evidence of fear incubation. On the basis of these results, the second aim was to further characterize the nature and specificity of the extinction phenotype in 129S1, as an exemplar of the 129 substrains. Results showed that the extinction deficit in 129S1 was neither the result of a failure to habituate to a sensitized fear response nor an artifact of a fear response to (unconditioned) tone per se. A stronger conditioning protocol (i.e. five × higher intensity shocks) produced an increase in fear expression in 129S1, relative to C57BL/6J, due to rapid rise in freezing during tone presentation. Taken together, these data show that impaired fear extinction is a phenotypic feature common across 129 substrains, and provide preliminary evidence that impaired fear extinction in 129S1 may reflect a pro-fear incubation-like process. [source]


    Characterization of the quantitative trait locus for haloperidol-induced catalepsy on distal mouse chromosome 1

    GENES, BRAIN AND BEHAVIOR, Issue 2 2008
    J. R. Hofstetter
    We report here the confirmation of the quantitative trait locus for haloperidol-induced catalepsy on distal chromosome (Chr) 1. We determined that this quantitative trait locus was captured in the B6.D2- Mtv7a/Ty congenic mouse strain, whose introgressed genomic interval extends from approximately 169.1 to 191.3 Mb. We then constructed a group of overlapping interval-specific congenic strains to further break up the interval and remapped the locus between 177.5 and 183.4 Mb. We next queried single nucleotide polymorphism (SNP) data sets and identified three genes with nonsynonymous coding SNPs in the quantitative trait locus. We also queried two brain gene expression data sets and found five known genes in this 5.9-Mb interval that are differentially expressed in both whole brain and striatum. Three of the candidate quantitative trait genes were differentially expressed using quantitative real-time polymerase chain reaction analyses. Overall, the current study illustrates how multiple approaches, including congenic fine mapping, SNP analysis and microarray gene expression screens, can be integrated both to reduce the quantitative trait locus interval significantly and to detect promising candidate quantitative trait genes. [source]


    Fine mapping of a sedative-hypnotic drug withdrawal locus on mouse chromosome 11

    GENES, BRAIN AND BEHAVIOR, Issue 1 2006
    H. M. Hood
    We have established that there is a considerable amount of common genetic influence on physiological dependence and associated withdrawal from sedative-hypnotic drugs including alcohol, benzodiazepines, barbiturates and inhalants. We previously mapped two loci responsible for 12 and 9% of the genetic variance in acute alcohol and pentobarbital withdrawal convulsion liability in mice, respectively, to an approximately 28-cM interval of proximal chromosome 11. Here, we narrow the position of these two loci to a 3-cM interval (8.8 Mb, containing 34 known and predicted genes) using haplotype analysis. These include genes encoding four subunits of the GABAA receptor, which is implicated as a pivotal component in sedative-hypnotic dependence and withdrawal. We report that the DBA/2J mouse strain, which exhibits severe withdrawal from sedative-hypnotic drugs, encodes a unique GABAA receptor ,2 subunit variant compared with other standard inbred strains including the genetically similar DBA/1J strain. We also demonstrate that withdrawal from zolpidem, a benzodiazepine receptor agonist selective for ,1 subunit containing GABAA receptors, is influenced by a chromosome 11 locus, suggesting that the same locus (gene) influences risk of alcohol, benzodiazepine and barbiturate withdrawal. Our results, together with recent knockout studies, point to the GABAA receptor ,2 subunit gene (Gabrg2) as a promising candidate gene to underlie phenotypic differences in sedative-hypnotic physiological dependence and associated withdrawal episodes. [source]


    Heritability, correlations and in silico mapping of locomotor behavior and neurochemistry in inbred strains of mice

    GENES, BRAIN AND BEHAVIOR, Issue 4 2005
    T. R. Mhyre
    The midbrain dopamine system mediates normal and pathologic behaviors related to motor activity, attention, motivation/reward and cognition. These are complex, quantitative traits whose variation among individuals is modulated by genetic, epigenetic and environmental factors. Conventional genetic methods have identified several genes important to this system, but the majority of factors contributing to the variation remain unknown. To understand these genetic and environmental factors, we initiated a study measuring 21 behavioral and neurochemical traits in 15 common inbred mouse strains. We report trait data, heritabilities and genetic and non-genetic correlations between pheno-types. In general, the behavioral traits were more heritable than neurochemical traits, and both genetic and non-genetic correlations within these trait sets were high. Surprisingly, there were few significant correlations between the behavioral and the individual neurochemical traits. However, striatal serotonin and one measure of dopamine turnover (DOPAC/DA) were highly correlated with most behavioral measures. The variable accounting for the most variation in behavior was mouse strain and not a specific neurochemical measure, suggesting that additional genetic factors remain to be determined to account for these behavioral differences. We also report the prospective use of the in silico method of quantitative trait loci (QTL) analysis and demonstrate difficulties in the use of this method, which failed to detect significant QTLs for the majority of these traits. These data serve as a framework for further studies of correlations between different midbrain dopamine traits and as a guide for experimental cross designs to identify QTLs and genes that contribute to these traits. [source]


    Generation and characterization of Csrp1 enhancer-driven tissue-restricted Cre-recombinase mice

    GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 5 2008
    Paige Snider
    Histological section showing beta-galactosidase staining (blue) of embryonic day 12.5 heart from a new cysteine-rich protein (Cspr1) transgenic mouse strain crossed to the R26R cre reporter mouse. Staining is found specifically in the outflow tract cushions and myocardial cuff. See the paper by Snider et al. in the March 2008 issue. [source]


    Genetic control of resistance to hepatocarcinogenesis by the mouse Hpcr3 locus,

    HEPATOLOGY, Issue 2 2008
    Giacomo Manenti
    The genome of the BALB/c mouse strain provides alleles that dominantly inhibit hepatocellular tumor development in F1 crosses with the highly hepatocarcinogenesis-susceptible C3H/He strain. Genome-wide linkage analysis using a 1536,single-nucleotide polymorphism array in a (C3H/He × BALB/c)F2 intercross population treated with urethane to induce hepatocellular tumor development revealed a locus with a major role in the resistance to hepatocarcinogenesis. This locus, designated hepatocarcinogen resistance 3 (Hpcr3) and mapping to central chromosome 15, showed a linkage at LOD score = 16.52 and accounted for 40% of the phenotypical variance. The BALB/c-derived allele at Hpcr3 reduced tumor-occupied area of the liver up to 25-fold, in a semidominant way. Additional minor loci were mapped to chromosomes 1, 10, and 18. A gene expression profile of normal adult mouse liver showed a significant association with susceptibility of BALB/c, C3H/He, and F1 mice to hepatocarcinogenesis and identified the genes expressed in the Hpcr3 locus region; moreover, this analysis implicated the E2F1 pathway in the modulation of the phenotype susceptibility to hepatocarcinogenesis. Conclusion: These findings, indicating the complex genetics of dominant resistance to hepatocarcinogenesis, represent a step toward the identification of the genes underlying this phenotype. (HEPATOLOGY 2008;48:617,623.) [source]


    A mouse model for cystic biliary dysgenesis in autosomal recessive polycystic kidney disease (ARPKD),

    HEPATOLOGY, Issue 5 2005
    Markus Moser
    Autosomal recessive polycystic kidney disease (ARPKD) is an important cause of liver- and renal-related morbidity and mortality in childhood. Recently, PKHD1, the gene encoding the transmembrane protein polyductin, was shown to be mutated in ARPKD patients. We here describe the first mouse strain, generated by targeted mutation of Pkhd1. Due to exon skipping, Pkhd1ex40 mice express a modified Pkhd1 transcript and develop severe malformations of intrahepatic bile ducts. Cholangiocytes maintain a proliferative phenotype and continuously synthesize TGF-,1. Subsequently, mesenchymal cells within the hepatic portal tracts continue to synthesize collagen, resulting in progressive portal fibrosis and portal hypertension. Fibrosis did not involve the hepatic lobules, and we did not observe any pathological changes in morphology or function of hepatocytes. Surprisingly and in contrast to human ARPKD individuals, Pkhd1ex40 mice develop morphologically and functionally normal kidneys. In conclusion,our data indicate that subsequent to formation of the embryonic ductal plate, dysgenesis of terminally differentiated bile ducts occurs in response to the Pkhd1ex40 mutation. The role of polyductin in liver and kidney may be functionally divergent, because protein domains essential for bile duct development do not affect nephrogenesis in our mouse model. Supplementary material for this article can be found on the HEPATOLOGYwebsite (http://www.interscience.wiley.com/jpages/0270-9139/suppmat/index.html). (HEPATOLOGY 2005.) [source]


    Defective T-cell function leading to reduced antibody production in a kleisin-, mutant mouse

    IMMUNOLOGY, Issue 2 2008
    Katharine M. Gosling
    Summary The recently described nessy (Ncaph2nes/nes) mutant mouse strain has a defect in T-cell development caused by a mutation in the ubiquitous kleisin-, (also known as Ncaph2). Kleisin- , is a subunit of the condensin II complex involved in chromosome condensation during mitosis. The nessy phenotype is characterized by CD44hi CD8+ peripheral T cells, 10,20% of normal thymocyte numbers and 2·5-fold fewer ,, T cells in the spleen compared with wild-type mice. In this study we examined the effect of the nessy mutation in kleisin-, on the immune response by challenging mice with an attenuated strain of Salmonella. Results showed that nessy mice control bacterial load as effectively as wild-type mice but exhibit a reduced antibody titre. Further experiments revealed that while the T-dependent antibody response was diminished in nessy mice the T-independent response was normal, suggesting that the defect was the result of T-cell function and not B-cell function. In vitro activation assays showed that nessy T cells have a lower capacity to up-regulate the early activation marker CD69 than wild-type T cells. Upon transfer into RAG,/, mice, nessy and wild-type CD4 T cells showed equivalent homeostatic proliferation, while nessy CD8 T cells proliferated more than their wild-type counterparts. When cultured with anti-T-cell receptor , or concanavalin A, nessy T cells were found to die faster than wild-type T cells. These data indicate that kleisin-, is required for a normal immune response, and represent the first demonstration of a role for kleisin-, in T-cell function. [source]


    Dynamic morphological changes in the skulls of mice mimicking human Apert syndrome resulting from gain-of-function mutation of FGFR2 (P253R)

    JOURNAL OF ANATOMY, Issue 2 2010
    Xiaolan Du
    Abstract Apert syndrome is caused mainly by gain-of-function mutations of fibroblast growth factor receptor 2. We have generated a mouse model (Fgfr2+/P253R) mimicking human Apert syndrome resulting from fibroblast growth factor receptor 2 Pro253Arg mutation using the knock-in approach. This mouse model in general has the characteristic skull morphology similar to that in humans with Apert syndrome. To characterize the detailed changes of form in the overall skull and its major anatomic structures, euclidean distance matrix analysis was used to quantitatively compare the form and growth difference between the skulls of mutants and their wild-type controls. There were substantial morphological differences between the skulls of mutants and their controls at 4 and 8 weeks of age (P < 0.01). The mutants showed shortened skull dimensions along the rostrocaudal axis, especially in their face. The width of the frontal bone and the distance between the two orbits were broadened mediolaterally. The neurocrania were significantly increased along the dorsoventral axis and slightly increased along the mediolateral axis, and also had anteriorly displayed opisthion along the rostrocaudal axis. Compared with wild-type, the mutant mandible had an anteriorly displaced coronoid process and mandibular condyle along the rostrocaudal axis. We further found that there was catch-up growth in the nasal bone, maxilla, zygomatic bone and some regions of the mandible of the mutant skulls during the 4,8-week interval. The above-mentioned findings further validate the Fgfr2+/P253R mouse strain as a good model for human Apert syndrome. The changes in form characterized in this study will help to elucidate the mechanisms through which the Pro253Arg mutation in fibroblast growth factor receptor 2 affects craniofacial development and causes Apert syndrome. [source]


    The subpopulation of CF-1 mice deficient in P-glycoprotein contains a murine retroviral insertion in the mdr1a gene

    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 2 2001
    Todd R. Pippert
    Abstract A subpopulation of the CF-1 mouse strain is sensitive to neurotoxicity following exposure to avermectins, a family of structurally related antiparasitic agents. This unusual sensitivity is the result of a deficiency in the mdr1a P-glycoprotein that normally contributes to a functional blood-brain barrier. Previous studies demonstrated a correlation between P-glycoprotein levels in the brain, intestine, testis, and placenta with an restriction fragment length polymorphism (RFLP) pattern from DNA isolated from the animals. We have demonstrated that only P-glycoprotein derived from the mdr1a gene is deficient in these mice. In this article, we describe the genetic defect in the subpopulation of CF-1 mice resulting in an absence of P-glycoprotein. The data presented describes a reverse transcription,polymerase chain reaction (RT-PCR) protocol that specifically amplifies mdr1a mRNA from tissue and confirms that the P-glycoprotein defect results from a truncated mRNA with a deleted exon 23. Genomic amplification and sequencing of the intron between exon 22 and 23 in Pgp-deficient animals reveals an insertion of approximately 8.35 kb of DNA at the exon 23 intron,exon junction corresponding to a murine leukemia virus. This insertion results in the aberrant splicing of the mRNA and the loss of exon 23 during RNA processing. © 2001 John Wiley & Sons, Inc. J Biochem Mol Toxicol 15:83,89, 2001 [source]


    Ovariectomy-Induced Bone Loss Varies Among Inbred Strains of Mice,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2005
    Mary L Bouxsein PhD
    Abstract There is a subset of women who experience particularly rapid bone loss during and after the menopause. However, the factors that lead to this enhanced bone loss remain obscure. We show that patterns of bone loss after ovariectomy vary among inbred strains of mice, providing evidence that there may be genetic regulation of bone loss induced by estrogen deficiency. Introduction: Both low BMD and increased rate of bone loss are risk factors for fracture. Bone loss during and after the menopause is influenced by multiple hormonal factors. However, specific determinants of the rate of bone loss are poorly understood, although it has been suggested that genetic factors may play a role. We tested whether genetic factors may modulate bone loss subsequent to estrogen deficiency by comparing the skeletal response to ovariectomy in inbred strains of mice. Materials and Methods: Four-month-old mice from five inbred mouse strains (C3H/HeJ, BALB/cByJ, CAST/EiJ, DBA2/J, and C57BL/6J) underwent ovariectomy (OVX) or sham-OVX surgery (n = 6-9/group). After 1 month, mice were killed, and ,CT was used to compare cortical and trabecular bone response to OVX. Results: The effect of OVX on trabecular bone varied with mouse strain and skeletal site. Vertebral trabecular bone volume (BV/TV) declined after OVX in all strains (,15 to ,24%), except for C3H/HeJ. In contrast, at the proximal tibia, C3H/HeJ mice had a greater decline in trabecular BV/TV (,39%) than C57BL/6J (,18%), DBA2/J (,23%), and CAST/EiJ mice (,21%). OVX induced declines in cortical bone properties, but in contrast to trabecular bone, the effect of OVX did not vary by mouse strain. The extent of trabecular bone loss was greatest in those mice with highest trabecular BV/TV at baseline, whereas cortical bone loss was lowest among those with high cortical bone parameters at baseline. Conclusions: We found that the skeletal response to OVX varies in a site- and compartment-specific fashion among inbred mouse strains, providing support for the hypothesis that bone loss during and after the menopause is partly genetically regulated. [source]


    Hepatic covalent adduct formation with zomepirac in the CD26-deficient mouse

    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 1 2002
    MIN WANG
    Abstract Background and Aims: Zomepirac (ZP), a non-steroidal anti-inflammatory drug (NSAID), has been reported to cause immune-mediated liver injury. In vivo, ZP is metabolized to a chemically reactive acyl glucuronide conjugate (ZAG) which can undergo covalent adduct formation with proteins. Such acyl glucuronide-derived drug-protein adducts may be important in the development of immune and toxic responses caused by NSAID. We have shown using immunoabsorptions that the 110 kDa CD26 (dipeptidyl peptidase IV) is one of the hepatic target proteins for covalent modification by ZAG. In the present study, a CD26-deficient mouse strain was used to examine protein targets for covalent modification by ZP/metabolites in the liver. Methods and Results: The CD26-deficient phenotype was confirmed by immunohistochemistry, flow cytometry analysis, RT-PCR, enzyme assay and immunoblotting. Moreover, by using monoclonal antibody immunoblots, CD26 was not detected in the livers of ZP-treated CD26-deficient mice. Immunoblots using a polyclonal antiserum to ZP on liver from ZP-treated mice showed three major sizes of protein bands, in the 70, 110 and 140 kDa regions. Most, but not all, of the anti-ZP immunoreactivity in the 110 kDa region was absent from ZP-treated CD26-deficient mice. Conclusion: These data definitively showed that CD26 was a component of ZP-modified proteins in vivo. In addition, the data suggested that at least one other protein of approximately 110 kDa was modified by covalent adduct formation with ZAG. [source]


    Proopiomelanocortin Peptides Are Not Essential for Development of Ethanol-Induced Behavioral Sensitization

    ALCOHOLISM, Issue 7 2009
    Amanda L. Sharpe
    Background:, Behavioral sensitization is a result of neuroadaptation to repeated drug administration and is hypothesized to reflect an increased susceptibility to drug abuse. Proopiomelanocortin (POMC) derived peptides including ,-endorphin and ,-melanocyte stimulating hormone have been implicated in development of behavioral sensitization and the reinforcing effects of alcohol and other drugs of abuse. This study used a genetically engineered mouse strain that is deficient for neural POMC to directly determine if any POMC peptides are necessary for the development of ethanol-induced locomotor sensitization. Methods:, Adult female mice deficient for POMC in neurons only (Pomc,/,Tg/Tg, KO) and wildtype (Pomc+/+Tg/Tg, WT) littermates were injected once daily with either saline or ethanol (i.p.) for 12 to 13 days. On ethanol test day (day 13 or 14) all mice from both treatment groups received an i.p. injection of ethanol immediately before a 15-minute analysis of locomotor activity. Blood ethanol concentration (BEC) was measured on ethanol test day immediately following the test session. Baseline locomotor activity was measured for 15 minutes after a saline injection 2 days later in both groups. Results:, There was no significant difference in BEC between genotypes (WT = 2.11 ± 0.06; KO = 2.03 ± 0.08 mg/ml). Both WT and nPOMC-deficient mice treated repeatedly with ethanol demonstrated a significant increase in locomotor activity on test day when compared to repeated saline-treated counterparts. In addition, mice of both genotypes in the repeated saline groups showed a significant locomotor stimulant response to acute ethanol injection. Conclusions:, Central POMC peptides are not required for either the acute locomotor stimulatory effect of ethanol or the development of ethanol-induced locomotor sensitization. While these peptides may modulate other ethanol-associated behaviors, they are not essential for development of behavioral sensitization. [source]