Home About us Contact | |||
Mouse Spermatozoa (mouse + spermatozoa)
Selected AbstractsMouse spermatozoa contain a nuclease that is activated by pretreatment with EGTA and subsequent calcium incubationJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2008Segal M. Boaz Abstract We demonstrated that mouse spermatozoa cleave their DNA into ,50 kb loop-sized fragments with topoisomerase IIB when treated with MnCl2 and CaCl2 in a process we term sperm chromatin fragmentation (SCF). SCF can be reversed by EDTA. A nuclease then further degrades the DNA in a process we term sperm DNA degradation (SDD). MnCl2 alone could elicit this activity, but CaCl2 had no effect. Here, we demonstrate the existence of a nuclease in the vas deferens that can be activated by ethylene glycol tetraacetic acid (EGTA) to digest the sperm DNA by SDD. Spermatozoa were extracted with salt and dithiothreitol to remove protamines and then incubated with EGTA. Next, the EGTA was removed and divalent cations were added. We found that Mn2+, Ca2+, or Zn2+ could each activate SDD in spermatozoa but Mg2+ could not. When the reaction was slowed by incubation on ice, EGTA pretreatment followed by incubation in Ca2+ elicited the reversible fragmentation of sperm DNA evident in SCF. When the reactions were then incubated at 37°C they progressed to the more complete degradation of DNA by SDD. EDTA could also be used to activate the nuclease, but required a higher concentration than EGTA. This EGTA-activatable nuclease activity was found in each fraction of the vas deferens plasma: in the spermatozoa, in the surrounding fluid, and in the insoluble components in the fluid. These results suggest that this sperm nuclease is regulated by a mechanism that is sensitive to EGTA, possibly by removing inhibition of a calcium binding protein. J. Cell. Biochem. 103: 1636,1645, 2008. © 2007 Wiley-Liss, Inc. [source] Further studies on knockout mice lacking a functional dynein heavy chain (MDHC7).CYTOSKELETON, Issue 2 2005Abstract Male mice had been previously generated in which the inner dynein arm heavy chain 7 gene (MDHC7) was disrupted. MDHC7,/, animals show asthenozoospermia and are sterile. Very few of their spermatozoa can achieve forward progression, but for those that can, we add here the information (1) that the three-dimensional aspects of their movement are normal; (2) that their maximum velocity is less than that of wild-type controls; and (3) that they are entirely unable to penetrate media of raised viscosity (25,4,000 cP). However, the large majority of the spermatozoa can achieve only a low amplitude vibration. In these sperm we find, using electron microscopy, that the outer dense fibres retain attachments to the inner surface of the mitochondria. Such attachments are present in normal epididymal mouse spermatozoa but are broken down as soon as the sperm become motile on release from the epididymis. The attachments are presumed to be essential during midpiece development and, afterwards, to require a threshold level of force to loosen them and so permit the sliding displacements necessary for normal bending. We presume that the disruption of the inner dynein arm heavy chain gene, MDHC7, means that there is insufficient force to overcome the attachments, for all but a few spermatozoa. Cell Motil. Cytoskeleton 61:74,82, 2005. © 2005 Wiley-Liss, Inc. [source] Glutamylated tubulin: Diversity of expression and distribution of isoformsCYTOSKELETON, Issue 1 2003Marie-Louise Kann Abstract Glutamylation of , and , tubulin isotypes is a major posttranslational modification giving rise to diversified isoforms occurring mainly in neurotubules, centrioles, and axonemes. Monoglutamylated tubulin isoforms can be differentially recognized by two mAbs, B3 and GT335, which both recognize either polyglutamylated isoforms. In the present study, immunoelectron microscopy and immunofluorescence analyses were performed with these two mAbs to determine the expression and distribution of glutamylated tubulin isoforms in selected biological models whose tubulin isotypes are characterized. In mouse spermatozoa, microtubules of the flagellum contain polyglutamylated isoforms except in the tip where only monoglutamylated isoforms are detected. In spermatids, only a subset of manchette microtubules contain monoglutamylated tubulin isoforms. Cytoplasmic microtubules of Sertoli cells are monoglutamylated. Mitotic and meiotic spindles of germ cells are monoglutamylated whereas the HeLa cell mitotic spindle is polyglutamylated. Three models of axonemes are demonstrated as a function of the degree and extent of tubulin glutamylation. In lung ciliated cells, axonemes are uniformly polyglutamylated. In sea urchin sperm and Chlamydomonas, flagellar microtubules are polyglutamylated in their proximal part and monoglutamylated in their distal part. In Paramecium, cilia are bi- or monoglutamylated only at their base. In all cells, centrioles or basal bodies are polyglutamylated. These new data emphasize the importance of glutamylation in all types of microtubules and strengthen the hypothesis of its role in the regulation of the intracellular traffic and flagellar motility. Cell Motil. Cytoskeleton 55:14,25, 2003. © 2003 Wiley-Liss, Inc. [source] Mouse spermatozoa contain a nuclease that is activated by pretreatment with EGTA and subsequent calcium incubationJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2008Segal M. Boaz Abstract We demonstrated that mouse spermatozoa cleave their DNA into ,50 kb loop-sized fragments with topoisomerase IIB when treated with MnCl2 and CaCl2 in a process we term sperm chromatin fragmentation (SCF). SCF can be reversed by EDTA. A nuclease then further degrades the DNA in a process we term sperm DNA degradation (SDD). MnCl2 alone could elicit this activity, but CaCl2 had no effect. Here, we demonstrate the existence of a nuclease in the vas deferens that can be activated by ethylene glycol tetraacetic acid (EGTA) to digest the sperm DNA by SDD. Spermatozoa were extracted with salt and dithiothreitol to remove protamines and then incubated with EGTA. Next, the EGTA was removed and divalent cations were added. We found that Mn2+, Ca2+, or Zn2+ could each activate SDD in spermatozoa but Mg2+ could not. When the reaction was slowed by incubation on ice, EGTA pretreatment followed by incubation in Ca2+ elicited the reversible fragmentation of sperm DNA evident in SCF. When the reactions were then incubated at 37°C they progressed to the more complete degradation of DNA by SDD. EDTA could also be used to activate the nuclease, but required a higher concentration than EGTA. This EGTA-activatable nuclease activity was found in each fraction of the vas deferens plasma: in the spermatozoa, in the surrounding fluid, and in the insoluble components in the fluid. These results suggest that this sperm nuclease is regulated by a mechanism that is sensitive to EGTA, possibly by removing inhibition of a calcium binding protein. J. Cell. Biochem. 103: 1636,1645, 2008. © 2007 Wiley-Liss, Inc. [source] Role of glycerol-3-phosphate dehydrogenase 2 in mouse sperm capacitationMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 9 2010Venkatesh Kota A tyrosine phosphoproteome study of hamster spermatozoa indicated that glycerol-3-phosphate dehydrogenase 2 (GPD2), is one of the proteins that enables tyrosine phosphorylation during sperm capacitation. Further, enzymatic activity of GPD2 correlated positively with sperm capacitation [Kota et al., 2009; Proteomics 9:1809,1826]. Therefore, understanding the function of GPD2 would help to unravel the molecular mechanism of sperm capacitation. In this study, involving the use of spermatozoa from Gpd2+/+ and Gpd2,/, mice, it has been demonstrated that in the absence of Gpd2, hyperactivation and acrosome reaction were significantly altered, and a few changes in protein tyrosine phosphorylation were also observed during capacitation. Evidence is provided to demonstrate that GPD2 activity is required for ROS generation in mouse spermatozoa during capacitation, failing which, capacitation is impaired. These results imply that GPD2 is involved in sperm capacitation. Mol. Reprod. Dev. 77: 773,783, 2010. © 2010 Wiley-Liss, Inc. [source] Identification of a heat-shock protein Hsp40, DjB1, as an acrosome- and a tail-associated component in rodent spermatozoaMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2007Masamichi Doiguchi Abstract Iba1 is a 17-kDa EF-hand protein highly expressed in the cytoplasm of elongating spermatids in testis. Using Iba1 as a bait, we performed yeast Two-hybrid screening and isolated a heat-shock protein Hsp40, DjB1, from cDNA library of mouse testis. To characterize DjB1 that is encoded by Dnajb1 gene, we carried out immunoblot analyses, in situ hybridization, and immunohistochemistry. Immunoblot analyses showed that DjB1was constitutively expressed in mouse testis and that its expression level was not changed by heat shock. Dnajb1 mRNA was exclusively expressed in spermatocytes and round spermatids in mouse testis, and Dnajb1 protein DjB1 was predominantly expressed in the cytoplasm of spermatocytes, round spermatids, and elongating spermatids. In mature mouse spermatozoa, DjB1 was localized in the middle and the end pieces of flagella as well as in association with the head (acrosomal region). Association of DjB1 with the acrosomal region in sperm head was also observed in rat spermatozoa. These data suggested that DjB1, which was constitutively expressed in postmeiotic spermatogenic cells in testis, was integrated into spermatozoa as at least two components, that is, sperm head and tail of rodent spermatozoa. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source] The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identificationPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 8 2008Mark A. Baker Dr. Abstract Proteomic profiling of the mouse spermatozoon has generated a unique and valuable inventory of candidates that can be mined for potential contraceptive targets and to further our understanding of the PTMs that regulate the functionality of this highly specialized cell. Here we report the identification of 858 proteins derived from mouse spermatozoa, 23 of which demonstrated testis only expression. The list contained many proteins that are known constituents of murine spermatozoa including Izumo, Spaca 1, 3, and 5, Spam 1, Zonadhesin, Spesp1, Smcp, Spata 6, 18, and 19, Zp3r, Zpbp 1 and 2, Spa17, Spag 6, 16, and 17, CatSper4, Acr, Cylc2, Odf1 and 2, Acrbp, and Acrv1. Certain protein families were highly represented in the proteome. For example, of the 42 gene products classified as proteases, 26 belonged to the 26S-proteasome. Of the many chaperones identified in this proteome, eight proteins with a TCP-1 domain were found, as were seven Rab guanosine triphosphatases. Finally, our list yielded three putative seven-transmembrane proteins, two of which have no known tissue distribution, an extragenomic progesterone receptor and three unique testis-specific kinases all of which may have some potential in the future regulation of male fertility. [source] Identification of Evolutionary Conserved Mouse Sperm Surface Antigens by Human Antisperm Antibodies (ASA) from Infertile PatientsAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 5 2006Agnieszka Paradowska Problem The presence of antisperm antibodies (ASA) in semen may impair sperm function leading to immunological infertility. The aim of the study was to identify the evolutionary conserved antigens on mouse sperm surface that react with human ASA in order to study the mechanism of autoimmune infertility. Methods of study The binding of human ASA to mouse sperm was investigated by means of indirect immunofluorescence. 2D-electrophoresis was applied to separate the biotin-labelled mouse membrane proteins using isoelectric focusing followed by polyacrylamide gel electrophoresis. Cognate antigens of ASA from seminal plasma of infertile patients were analysed by Western blotting. Performing avidin-blots it was detected which of the proteins recognized were sperm surface proteins. The spots of interest were analysed by means of mass spectrometry. Results ASA bound most frequently (36%) to the post-acrosomal region and to the midpiece of mouse spermatozoa. About 30% of ASA recognized apo lactate dehydrogenase (LDHC4) as a cognate antigen, 30% voltage-dependent anion channel (VDAC2). ASA of 20% bound to outer dense fibre protein and 20% of samples recognized glutathione S-transferase mu5. Conclusions Human ASA bound to specific cognate antigens of mouse spermatozoa, offering the possibility to study their functional relevance in the mouse model. [source] The Fas system in the seminiferous epithelium and its possible extra-testicular roleANDROLOGIA, Issue 1 2003A. Riccioli Summary. The Fas system is involved in the control of immune system homeostasis and nonfunctional Fas system leads to autoimmune disease in mice and humans. The Fas system is a mechanism through which cells expressing Fas ligand (FasL) induce apoptosis of Fas expressing cells. In mouse and rat, the testis represents the main source of constitutive FasL in the body. The roles so far proposed for this molecule in the testis, such as maintenance of immunoprivilege and regulation of physiological germ cell apoptosis, need to be reconsidered as both hypotheses are based on an erroneous cellular location of FasL in the seminiferous epithelium. Recently, we demonstrated that in rodents FasL mRNA is present in germ cells and not in Sertoli cells, and that FasL protein is displayed on the surface of spermatozoa. Here we propose that, for the mouse spermatozoa, the FasL may represent a self-defence mechanism against lymphocytes present in the female genital tract. To verify this hypothesis, we performed crossings between males gld, with nonfunctional FasL, and syngenic or nonsyngenic females. We observed a significant decrease of litter size in outbred crossings with gld males compared with wild-type males, suggesting a possible role of FasL in immunoprotection of the sperm in the female genital tract. The possibility that in humans, by analogy with mouse, FasL plays a self-protective role for the spermatozoon cannot be excluded, and awaits experimental information on the expression of FasL on human sperm cells. [source] |