Home About us Contact | |||
Mouse Phenotype (mouse + phenotype)
Selected AbstractsTNF receptor type 1 regulates RANK ligand expression by stromal cells and modulates osteoclastogenesisJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2004Yousef Abu-Amer Abstract TNF, is a major osteoclastogenic cytokine and a primary mediator of inflammatory osteoclastogenesis. We have previously shown that this cytokine directly targets osteoclasts and their precursors and that deletion of its type-1 receptor (TNFr1) lessens osteoclastogenesis and impacts RANK signaling molecules. Osteoclastogenesis is primarily a RANK/RANKL-dependent event and occurs in an environment governed by both hematopoietic and mesenchymal compartments. Thus, we reasoned that TNF/TNFr1 may regulate RANKL and possibly RANK expression by stromal cells and osteoclast precursors (OCPs), respectively. RT-PCR experiments reveal that levels of RANKL mRNA in WT stromal cells are increased following treatment with 1,25-VD3 compared to low levels in TNFr1-null cells. Expression levels of OPG, the RANKL decoy protein, were largely unchanged, thus supporting a RANKL/OPG positive ratio favoring WT cells. RANK protein expression by OCPs was lower in TNFr1-null cells despite only subtle differences in mRNA expression in both cell types. Mix and match experiments of different cell populations from the two mice phenotypes show that WT stromal cells significantly, but not entirely, restore osteoclastogenesis by TNFr1-null OCPs. Similar results were obtained when the latter cells were cultured in the presence of exogenous RANKL. Altogether, these findings indicate that in the absence of TNFr1 both cell compartments are impaired. This was further confirmed by gain of function experiments using TNFr1- null cultures of both cell types at which exogenous TNFr1 cDNA was virally expressed. Thus, restoration of TNFr1 expression in OCPs and stromal cells was sufficient to reinstate osteoclastogenesis and provides direct evidence that TNFr1 integrity is required for optimal RANK-mediated osteoclastogenesis. © 2004 Wiley-Liss, Inc. [source] Liver cell transplantation leads to repopulation and functional correction in a mouse model of Wilson's diseaseJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 11 2004KATRINA J ALLEN Abstract Background and Aim:, The toxic milk (tx) mouse is a non-fatal animal model for the metabolic liver disorder, Wilson's disease. The tx mouse has a mutated gene for a copper-transporting protein, causing early copper accumulation in the liver and late accumulation in other tissues. The present study investigated the efficacy of liver cell transplantation (LCT) to correct the tx mouse phenotype. Methods:, Congenic hepatocytes were isolated and intrasplenically transplanted into 3,4-month-old tx mice, which were then placed on various copper-loaded diets to examine its influence on repopulation by transplanted cells. The control animals were age-matched untransplanted tx mice. Liver repopulation was determined by comparisons of restriction fragment length polymorphism ratios (DNA and mRNA), and copper levels were measured by atomic absorption spectroscopy. Results:, Repopulation in recipient tx mice was detected in 11 of 25 animals (44%) at 4 months after LCT. Dietary copper loading (whether given before or after LCT, or both) provided no growth advantage for donor cells, with similar repopulation incidences in all copper treatment groups. Overall, liver copper levels were significantly lower in repopulated animals (538 ± 68 µg/g, n = 11) compared to non-repopulated animals (866 ± 62 µg/g, n = 14) and untreated controls (910 ± 103 µg/g, n = 6; P < 0.05). This effect was also seen in the kidney and spleen. Brain copper levels remained unchanged. Conclusion:, Transplanted liver cells can proliferate and correct a non-fatal metabolic liver disease, with some restoration of hepatic copper homeostasis after 4 months leading to reduced copper levels in the liver and extrahepatic tissues, but not in the brain. [source] Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosusARTHRITIS & RHEUMATISM, Issue 1 2010Nicholas Simpson Objective In the sanroque mouse model of lupus, pathologic germinal centers (GCs) arise due to increased numbers of follicular helper T (Tfh) cells, resulting in high-affinity anti,double-stranded DNA antibodies that cause end-organ inflammation, such as glomerulonephritis. The purpose of this study was to examine the hypothesis that this pathway could account for a subset of patients with systemic lupus erythematosus (SLE). Methods An expansion of Tfh cells is a causal, and therefore consistent, component of the sanroque mouse phenotype. We validated the enumeration of circulating T cells resembling Tfh cells as a biomarker of this expansion in sanroque mice, and we performed a comprehensive comparison of the surface phenotype of circulating and tonsillar Tfh cells in humans. This circulating biomarker was enumerated in SLE patients (n = 46), Sjögren's syndrome patients (n = 17), and healthy controls (n = 48) and was correlated with disease activity and end-organ involvement. Results In sanroque mice, circulating Tfh cells increased in proportion to their GC counterparts, making circulating Tfh cells a feasible human biomarker of this novel mechanism of breakdown in GC tolerance. In a subset of SLE patients (14 of 46), but in none of the controls, the levels of circulating Tfh cells (defined as circulating CXCR5+CD4+ cells with high expression of Tfh-associated molecules, such as inducible T cell costimulator or programmed death 1) were increased. This cellular phenotype did not vary with time, disease activity, or treatment, but it did correlate with the diversity and titers of autoantibodies and with the severity of end-organ involvement. Conclusion These findings in SLE patients are consistent with the autoimmune mechanism in sanroque mice and identify Tfh effector molecules as possible therapeutic targets in a recognizable subset of patients with SLE. [source] Cardiovascular and renal phenotyping of genetically modified mice: A challenge for traditional physiologyCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 4 2003Sharyn M Fitzgerald Summary 1.,The advent of techniques to genetically modify experimental animals and produce directed mutations in both a conditional and tissue-specific manner has dramatically opened up new fields for physiologists in cardiovascular and renal research. 2.,A consequence of altering the genetic background of mice is the difficulty in predicting the phenotypic outcome of the genetic mutation. We therefore suggest that physiologists may need to change their current experimental paradigms to face this new era. Hence, our aim is to propose a complementary research philosophy for physiologists working in the post-genomic era. That is, instead of using strictly hypothesis-driven research philosophies, one will have to perform screening studies of mutant mice, within a field of interest, to find valuable phenotypes. Once a relevant phenotype is found, in-depth studies of the underlying mechanisms should be performed. These follow-up studies should be performed using a traditional hypothesis-driven research philosophy. 3.,The rapidly increasing availability of mutated mouse models of human disease also necessitates the development of techniques to characterize these various mouse phenotypes. In particular, the miniaturization and refinement of techniques currently used to study the renal and cardiovascular system in larger animals will be discussed in the present review. Hence, we aim to outline what techniques are currently available and should be present in a laboratory to screen and study renal and cardiovascular phenotypes in genetically modified mice, with particular emphasis on methodologies used in the intact, conscious animal. [source] |