Home About us Contact | |||
Mountain Building (mountain + building)
Selected AbstractsAfter the deluge: mitochondrial DNA indicates Miocene radiation and Pliocene adaptation of tree and giant weta (Orthoptera: Anostostomatidae)JOURNAL OF BIOGEOGRAPHY, Issue 2 2005Steven A. Trewick Abstract Aim, New Zealand broke away from the margins of Gondwana c. 75 Ma. Since then, New Zealand taxa derived from the Gondwanan biota are thought to have been exposed first to a subtropical climate on a low lying terrain, then severe land reduction during the Oligocene marine transgression, followed by much cooler climates of the Pliocene and Pleistocene, at which time mountain ranges emerged. The biological consequence of New Zealand's geological and climatic history is not well understood, in particular the extent to which the Oligocene acted as a biological bottleneck remains unresolved. Methods, We used mitochondrial cytochrome oxidase I and 12S DNA sequences to examine the extent of diversity and inferred timing of speciation of New Zealand weta (Anostostomatidae), a group of Orthoptera with a Gondwanan distribution generally thought to be ancient inhabitants of New Zealand. Main conclusions, We hypothesize that at least three distinct groups of weta survived the Oligocene marine transgression and radiated subsequently. Speciation followed during the Miocene and radiation into new habitats occurred during the Pliocene when mountain building created novel environments. Patterns of genetic diversity within species reflect, in some instances, geographical subdivision in the Pliocene, and in other cases, Pleistocene range changes resulting from climate change. [source] Phylogeographical pattern correlates with Pliocene mountain building in the alpine scree weta (Orthoptera, Anostostomatidae)MOLECULAR ECOLOGY, Issue 6 2000S. A. Trewick Abstract Most research on the biological effects of Pleistocene glaciation and refugia has been undertaken in the northern hemisphere and focuses on lowland taxa. Using single-strand conformation polymorphism (SSCP) analysis and sequencing of mitochondrial cytochrome oxidase I, we explored the intraspecific phylogeography of a flightless orthopteran (the alpine scree weta, Deinacrida connectens) that is adapted to the alpine zone of South Island, New Zealand. We found that several mountain ranges and regions had their own reciprocally monophyletic, deeply differentiated lineages. Corrected genetic distance among lineages was 8.4% (Kimura 2-parameter [K2P]) / 13% (GTR + I + ,), whereas within-lineage distances were only 2.8% (K2P) / 3.2% (GTR + I + ,). We propose a model to explain this phylogeographical structure, which links the radiation of D. connectens to Pliocene mountain building, and maintenance of this structure through the combined effects of mountain-top isolation during Pleistocene interglacials and ice barriers to dispersal during glacials. [source] Testing long-term patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin, AustraliaBASIN RESEARCH, Issue 3 2007D. W. Maidment ABSTRACT Detrital zircon geochronology of Neoproterozoic to Devonian sedimentary rocks from the Georgina and Amadeus basins has been used to track changes in provenance that reflect the development and inversion of the former Australian Superbasin. Through much of the Neoproterozoic, sediments appear to have been predominantly derived from local sources in the Arunta and Musgrave inliers. Close similarities between the detrital age signatures of late Neoproterozoic sedimentary rocks in the two basins suggests that they were contiguous at this time. A dominant population of 1.2,1.0 Ga zircon in Early Cambrian sediments of the Amadeus Basin reflects the uplift of the Musgrave Inlier during the Petermann Orogeny between 560 and 520 Ma, which shed a large volume of detritus northwards into the Amadeus Basin. Early Cambrian sedimentary rocks in the Georgina Basin have a much smaller proportion of 1.2,1.0 Ga detritus, possibly due to the formation of sub-basins along the northern margin of the Amadeus Basin which might have acted as a barrier to sediment transfer. An influx of 0.6,0.5 Ga zircon towards the end of the Cambrian coincides with the transgression of the Larapintine Sea across central Australia, possibly as a result of intracratonic rifting. Detrital zircon age spectra of sedimentary rocks deposited within this epicontinental sea are very similar to those of coeval sedimentary rocks from the Pacific Gondwana margin, implying that sediment was transported into central Australia from the eastern continental margin. The remarkably consistent ,Pacific Gondwana' signature of Cambro-Ordovician sediments in central and eastern Australia reflects a distal source, possibly from east Antarctica or the East African Orogen. The peak of the marine incursion into central Australia in the early to mid Ordovician coincides with granulite-facies metamorphism at mid-crustal depths between the Amadeus and Georgina basins (the Larapinta Event). The presence of the epicontinental sea, the relative lack of a local basement zircon component in Cambro-Ordovician sedimentary rocks and their maturity suggest that metamorphism was not accompanied by mountain building, consistent with an extensional or transtensional setting for this tectonism. Sediments deposited at ,435,405 and ,365 Ma during the Alice Springs Orogeny have detrital age signatures similar to those of Cambro-Ordovician sedimentary rocks, reflecting uplift and reworking of the older succession into narrow foreland basins adjacent to the orogen. [source] Disentangling causes of disjunction on the South Island of New Zealand: the Alpine fault hypothesis of vicariance revisitedBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2007MARTIN HAASE Many elements of the flora and fauna of New Zealand's South Island show disjunct distributions with conspecific populations or closely-related species that occur in the north-west and south separated by a central gap. Three events have been implicated to account for this pattern: Pleistocene glaciations, Pliocene mountain building, or displacement along the Alpine fault, the border of the Pacific and Australian plates stretching diagonally across the South Island from south-west to north-east that formed during the Miocene. Disjunct distributions of species level taxa are probably too young to be due to Alpine fault vicariance. It has therefore been suggested that the biogeographical impact of the Alpine fault, if any, should be apparent on deeper phylogenetic levels. We tested this hypothesis by reconstructing the phylogenetic relationships of the hydrobiid gastropods of New Zealand based on mitochondrial DNA fragments of cytochrome oxidase subunit I (CO I) and 16S rDNA. The creno- and stygobiont species of this family are typically poor dispersers. Therefore, ancient patterns of distribution may be conserved. The phylogenetic reconstructions were in accordance with the Alpine fault hypothesis uniting genera occurring on either side of the fault. Divergence estimates based on a molecular clock of CO I indicated splits predating the Pliocene uplift of the Alps. Š 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91, 361,374. [source] Temporal-Spatial Structure of Intraplate Uplift in the Qinghai-Tibet PlateauACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010Dewei LI Abstract: The intraplate uplift of the Qinghai-Tibet Plateau took place on the basis of breakup and assembly of the Precambrian supercontinent, and southward ocean-continent transition of the Proto-, Paleo-, Meso- and Neo-Tethys during the Caledonian, Indosinian, Yanshanian and Early Himalayan movements. The intraplate tectonic evolution of the Qinghai-Tibet Plateau underwent the early stage of intraplate orogeny characterized by migrational tectonic uplift, horizontal movement and geological processes during 180,7 Ma, and the late stage of isostatic mountain building characterized by pulsative rapid uplift, vertical movement and geographical processes since 3.6 Ma. The spatial-temporal evolution of the intraplate orogeny within the Qinghai-Tibet Plateau shows a regular transition from the northern part through the central part to the southern part during 180,120 Ma, 65,35 Ma, and 25,7 Ma respectively, with extensive intraplate faulting, folding, block movement, magmatism and metallogenesis. Simultaneous intraplate orogeny and basin formation resulted from crustal rheological stratification and basin-orogen coupling that was induced by lateral viscous flow in the lower crust. This continental dynamic process was controlled by lateral flow of hot and soft materials within the lower crust because of slab dehydration and melted mantle upwelling above the subducted plates during the southward Tethyan ocean-continent transition processes or asthenosphere diapirism. Intraplate orogeny and basin formation were irrelevant to plate collision. The Qinghai-Tibet Plateau as a whole was actually formed by the isostatic mountain building processes since 3.6 Ma that were characterized by crust-scale vertical movement, and integral rapid uplift of the plateau, accompanied by isostatic subsidence of peripheral basins and depressions, and great changes in topography and environment. A series of pulsative mountain building events, associated with gravity equilibrium and isostatic adjustment of crustal materials, at 3.6 Ma, 2.5 Ma, 1.8,1.2 Ma, 0.9,0.8 Ma and 0.15,0.12 Ma led to the formation of a composite orogenic belt by unifying the originally relatively independent Himalayas, Gangdisę, Tanghla, Longmenshan, Kunlun, Altyn Tagh, and Qilian mountains, and the formation of the complete Qinghai-Tibet Plateau with a unified mountain root after Miocene uplift of the plateau as a whole. [source] |