Mountain Birch (mountain + birch)

Distribution by Scientific Domains


Selected Abstracts


Physical Sheltering and Liming Improve Survival and Performance of Mountain Birch Seedlings: A 5-Year Study in a Heavily Polluted Industrial Barren

RESTORATION ECOLOGY, Issue 1 2006
Janne K. Eränen
Abstract Denuded landscapes adjacent to big polluters represent an extremely harsh environment for plants due to a unique combination of soil toxicity and physical stress. In a 5-year experiment we tested whether survival and performance of seedlings of Mountain birch (Betula pubescens ssp. czerepanovii) planted in two barren sites around the nickel,copper smelter at Monchegorsk, northwestern Russia, can be enhanced by physical sheltering and how large the supposed benefits to survival and performance are in relation to liming. Seedling performance was assessed by measuring growth parameters and chlorophyll fluorescence. Physical sheltering was found to be beneficial in some conditions: when soil characteristics were not so harsh as to cause 100% mortality, sheltering increased both survival and performance of birch seedlings. Although the benefits of liming on seedling performance and survival were stronger than the benefits of sheltering, sheltering may still have its uses in restoration when large-scale liming is not applicable, for example, when the ecological side effects of liming are to be avoided. [source]


Host tree architecture mediates the effect of predators on herbivore survival

ECOLOGICAL ENTOMOLOGY, Issue 3 2006
JANNE RIIHIMÄKI
Abstract 1.,Vegetation structural complexity is an important factor influencing ecological interactions between different trophic levels. In order to investigate relationships between the architecture of trees, the presence of arthropod predators, and survival and parasitism of the autumnal moth Epirrita autumnata Borkhausen, two sets of experiments were conducted. 2.,In one experiment, the architectural complexity of mountain birch was manipulated to separate the effects of plant structure and age. In the other experiment the trees were left intact, but chosen to represent varying degrees of natural complexity. Young autumnal moth larvae were placed on the trees and their survival was monitored during the larval period. 3.,The larvae survived longer in more complex trees if predation by ants was prevented with a glue ring, whereas in control trees smaller canopy size improved survival times in one experiment. The density of ants observed in the trees was not affected by canopy size but spider density was higher on smaller trees. The effect of canopy structure on larval parasitism was weak; larger canopy size decreased parasitism only in one year. Until the fourth instar the larvae travelled shorter distances in trees with reduced branchiness than in trees with reduced foliage or control treatments. Canopy structure manipulation by pruning did not alter the quality of leaves as food for larvae. 4.,The effect of canopy structure on herbivore survival may depend on natural enemy abundance and foraging strategy. In complex canopies herbivores are probably better able to escape predation by ambushing spiders but not by actively searching ants. [source]


Simulating forest ecosystem response to climate warming incorporating spatial effects in north-eastern China

JOURNAL OF BIOGEOGRAPHY, Issue 12 2005
Hong S. He
Abstract Aim, Predictions of ecosystem responses to climate warming are often made using gap models, which are among the most effective tools for assessing the effects of climate change on forest composition and structure. Gap models do not generally account for broad-scale effects such as the spatial configuration of the simulated forest ecosystems, disturbance, and seed dispersal, which extend beyond the simulation plots and are important under changing climates. In this study we incorporate the broad-scale spatial effects (spatial configurations of the simulated forest ecosystems, seed dispersal and fire disturbance) in simulating forest responses to climate warming. We chose the Changbai Natural Reserve in China as our study area. Our aim is to reveal the spatial effects in simulating forest responses to climate warming and make new predictions by incorporating these effects in the Changbai Natural Reserve. Location, Changbai Natural Reserve, north-eastern China. Method, We used a coupled modelling approach that links a gap model with a spatially explicit landscape model. In our approach, the responses (establishment) of individual species to climate warming are simulated using a gap model (linkages) that has been utilized previously for making predictions in this region; and the spatial effects are simulated using a landscape model (LANDIS) that incorporates spatial configurations of the simulated forest ecosystems, seed dispersal and fire disturbance. We used the recent predictions of the Canadian Global Coupled Model (CGCM2) for the Changbai Mountain area (4.6 °C average annual temperature increase and little precipitation change). For the area encompassed by the simulation, we examined four major ecosystems distributed continuously from low to high elevations along the northern slope: hardwood forest, mixed Korean pine hardwood forest, spruce-fir forest, and sub-alpine forest. Results, The dominant effects of climate warming were evident on forest ecosystems in the low and high elevation areas, but not in the mid-elevation areas. This suggests that the forest ecosystems near the southern and northern ranges of their distributions will have the strongest response to climate warming. In the mid-elevation areas, environmental controls exerted the dominant influence on the dynamics of these forests (e.g. spruce-fir) and their resilience to climate warming was suggested by the fact that the fluctuations of species trajectories for these forests under the warming scenario paralleled those under the current climate scenario. Main conclusions, With the spatial effects incorporated, the disappearance of tree species in this region due to the climate warming would not be expected within the 300-year period covered by the simulation. Neither Korean pine nor spruce-fir was completely replaced by broadleaf species during the simulation period. Even for the sub-alpine forest, mountain birch did not become extinct under the climate warming scenario, although its occurrence was greatly reduced. However, the decreasing trends characterizing Korean pine, spruce, and fir indicate that in simulations beyond 300 years these species could eventually be replaced by broadleaf tree species. A complete forest transition would take much longer than the time periods predicted by the gap models. [source]


Rapid evolution towards heavy metal resistance by mountain birch around two subarctic copper,nickel smelters

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2008
J. K. ERÄNEN
Abstract Adaptations to pollution among long-lived trees have rarely been documented, possibly because of their long reproductive cycles and the evolutionarily short timescales of anthropogenic pollution. Here, I present the results of a greenhouse experiment that suggest rapid evolutionary adaptation of mountain birch [Betula pubescens subsp. czerepanovii (Orlova) Hämet-Ahti] to heavy metal (HM) stress around two copper,nickel smelters in NW Russia. The adaptation incurs a cost with reduced performance of adapted seedlings in pristine conditions. The industrial barrens around the studied smelters are extremely high-stress sites with low seed germination and survival. It is likely that strong natural selection has eliminated all sensitive genotypes within one or two generations, with only the most tolerant individuals persisting and producing adapted seeds in the individual barrens. The results were similar from around both smelters, suggesting parallel evolution towards HM resistance. [source]


Host plant quality and defence against parasitoids: no relationship between levels of parasitism and a geometrid defoliator immunoassay

OIKOS, Issue 6 2008
Netta Klemola
Host plant quality has a major influence on the performance, and ultimately on the fitness of an herbivorous insect, but may also have indirect effects on the third trophic level by affecting an herbivore's defensive ability against natural enemies. In a three-year field study, we examined the effects of natural food quality on the ability of autumnal moths, Epirrita autumnata (Lepidoptera, Geometridae), to defend themselves against parasitoids. In each year, we confirmed the variation in quality of host trees (mountain birch, Betulapubescens ssp. czerepanovii) by determining the mass of pupae reared in mesh bags attached to the trees and the water content of leaves. Individuals grown on high quality trees possessed significantly higher encapsulation rate of a foreign antigen as pupae compared to those on low quality trees during the first and third study years; a parallel trend was also found in the second study year, although this difference was not statistically significant. However, in spite of observed differences in encapsulation rates, individuals reared on high and low quality trees did not differ in their levels of parasitisation when exposed to hymenopteran parasioids in the wild and thus were equally vulnerable. Accordingly, the encapsulation response seems not to play a major role on the population ecology scale in the studied system. Our findings also stress the importance of direct resistance tests, which should be conducted along with tests of insect immune function. [source]


Allocation of resources within mountain birch canopy after simulated winter browsing

OIKOS, Issue 1 2000
Kari Lehtilä
As a response to browsing, birches are known to produce fewer but larger, more nutritious leaves, with enhanced palatability for herbivores. We simulated winter browsing in ramets of mountain birch (Betula pubescens ssp. czerepanovii) to find out whether it decreases subsequent foliage biomass and alters the number and type of shoots. After removal of a considerable proportion of buds (up to 35%) in late winter, the birches were able to compensate for the lost leaf biomass in the following summer; there were no differences in total leaf biomass between winter-clipped and control ramets. This indicates that foliage growth was limited by the total amount of stored resources, not by the number of buds. Depending on the position of the buds removed, different mechanisms were responsible for the compensation. After removal of apical buds, the number of leaves decreased significantly but leaves were larger than in control ramets. Removal of the same mass of basal buds , containing similar amount of carbohydrates and proteins as in the treatment removing apical buds , activated dormant buds, especially in apical locations, so that leaf number was similar as in the controls; consequently, size of individual leaves increased only slightly. Thus, while the total leaf biomass in a tree seems to be limited by resources from source organs, the distribution of resources among different canopy sections is controlled by their relative sink strengths. In terms of leaf biomass, apical parts are able to compensate for bud loss by increasing shoot number, basal parts only by increasing leaf size. [source]