Home About us Contact | |||
Molecular Recognition Processes (molecular + recognition_process)
Selected AbstractsMultiple ligand simultaneous docking: Orchestrated dancing of ligands in binding sites of proteinJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 10 2010Huameng Li Abstract Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein,ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010 [source] Selective Adsorption of Polychlorinated Dibenzo- p -dioxins and Dibenzofurans by the Zeosils UTD-1, SSZ-24, and ITQ-4CHEMISTRY - A EUROPEAN JOURNAL, Issue 1 2004Ralph Jäger Dr. Abstract Zeosils are microporous solids with a pure silica framework. Due to their hydrophobic properties, zeosils are ideal host materials for the adsorption of hydrophobic guest molecules. We tested zeosils with different pore diameters (UTD-1, SSZ-24 and ITQ-4 as well as CIT-5) for the selective adsorption of the polychlorinated dibenzo- p -dioxins and dibenzofurans. This group of highly toxic substances contains 210 congeners that possess similar chemical properties, but differ in their size and shape. In the experiment, polychlorinated dibenzo- p -dioxins and dibenzofurans were extracted from fly ash of a waste incinerator, adsorbed on amorphous silica, then thermally desorbed and flushed over a sequential arrangement of the zeosils at elevated temperature by a stream of nitrogen. ITQ-4 with the smallest pore diameter was placed first, followed by SSZ-24 and, finally, by UTD-1 with the largest pore diameter. After the experiment, the zeosils were analysed for their contents of the different congeners. The results show that the sorption of the congeners occurs selectively and that it is governed by the size and the shape of the dioxin molecules, which in turn depend on the number of chlorine atoms and the pattern of chlorine substitution (regioisomers). Geometrical reasoning as well as molecular dynamics calculations on the zeosil structures and on the dioxin molecules were helpful in rationalising the results. This work represents an especially complex case of the molecular sieving effect and may lead to a selective on-line monitoring of the concentrations of dioxin molecules in waste gases of industrial combustion processes. The size- and shape-selective sorption of dioxin molecules may also bear some resemblance to the molecular recognition process that occurs in nature at the aryl hydrocarbon receptor. [source] Thermodynamic and kinetic analyses for understanding sequence-specific DNA recognitionGENES TO CELLS, Issue 5 2000Masayuki Oda Thermodynamic and kinetic analyses of biomolecular interactions reveal details of the energetic and dynamic features of molecular recognition processes, and complement structural analyses of the free and complexed conformations. The recent improvements in both isothermal titration calorimetry and surface plasmon resonance sensoring provide powerful tools for analysing biomolecular interactions in thermodynamic and kinetic approaches. The thermodynamic and kinetic parameters obtained for binding between protein and DNA indicate the mechanism of specific DNA recognition, in the high-resolution structures of the protein,DNA complexes. The effects of temperature and ionic strength reflect the conformational changes of the protein and DNA molecules upon complex formation, including important contributions of water and solutes. When combined with mutational studies, the interactions can be reduced to several energetic contributions from individual contacts. These studies should be useful to determine general features of protein functions in genetic regulation. [source] Direct monitoring of molecular recognition processes using fluorescence enhancement at colloid-coated microplatesJOURNAL OF MOLECULAR RECOGNITION, Issue 4 2001Ch. Lobmaier Abstract Direct monitoring of recognition processes at the molecular level is a valuable tool for studying reaction kinetics to assess affinity constants (e.g. drugs to receptors) and for designing rapid single step immunoassays. Methods currently used to gain information about binding processes predominantly depend on surface plasmon resonance. These systems use excitation with coherent light in attenuated total reflection geometry to obtain discrimination between surface-bound and free molecules in solution. Therefore labeling of the compounds is not necessary, but due to the complexity of the measuring setup the method is rather costly. In this contribution we present a simple method for performing kinetic single step biorecognition assays with fluorophore labeled compounds using the fluorescence enhancement properties of surface bound silver colloids. Silver colloids are bound to standard microplates via silanization of the plastic surface. Fluorophores close to this colloid coated surface show a significant gain in fluorescence compared to fluorophores farther away in the bulk solution. Therefore discrimination between surface bound and free fluorophores is possible and the binding of, for example, fluorophore labeled antibodies to antigens immobilized on the colloid surface results in increasing fluorescence intensity. Utilization of standard microplates makes this method fully compatible with conventional microplate processing and reading devices. Neither excitation with coherent laser light nor ATR geometry is required, the measurement is performed in a standard fluorescence microplate reader in front face geometry with a xenon flash lamp as excitation source. Methods for the preparation of colloid-coated microplates and fluorescence-enhanced biorecognition assays are presented. Additionally the dependence of the system performance on the structure and properties of the metal colloid coated surface is described. A two-component biorecognition model system shows a detection limit in the subnanomolar range. The ease of colloid-surface preparation and the high sensitivity makes fluorescence enhancement at colloid-coated microplates a valuable tool for studying reaction kinetics and performing rapid single-step immunoassays. Copyright © 2001 John Wiley & Sons, Ltd. [source] Probing DNA,peptide interaction forces at the single-molecule levelJOURNAL OF PEPTIDE SCIENCE, Issue 12 2006Norbert Sewald Abstract The versatility of chemical peptide synthesis combined with the high sensitivity of AFM single-molecule force spectroscopy allows us to investigate, quantify, and control molecular recognition processes (molecular nanotechnology), offering a tremendous potential in chemical biology. Single-molecule force spectroscopy experiments are able to detect fast intermediate transition states, details of the energy landscape, and structural changes, while avoiding multiple binding events that can occur under ensemble conditions. Dynamic force spectroscopy (DFS) is even able to provide data on the complex lifetime. This minireview outlines the biophysical methodology, discusses different experimental set-ups, and presents representative results in the form of two case studies, both dealing with DNA-binding peptides. They may serve as model systems, e.g., for transcription factors or gene transfection agents. Copyright © 2006 European Peptide Society and John Wiley & Sons, Ltd. [source] Hydrogen-Bonding Cooperativity: Using an Intramolecular Hydrogen Bond To Design a Carbohydrate Derivative with a Cooperative Hydrogen-Bond Donor CentreCHEMISTRY - A EUROPEAN JOURNAL, Issue 17 2004Virginie Vicente Dr. Abstract Neighbouring groups can be strategically located to polarise HO,,,OH intramolecular hydrogen bonds in an intended direction. A group with a unique hydrogen-bond donor or acceptor character, located at hydrogen-bonding distance to a particular OH group, has been used to initiate the hydrogen-bond network and to polarise a HO,,,OH hydrogen bond in a predicted direction. This enhanced the donor character of a particular OH group and made it a cooperative hydrogen-bond centre. We have proved that a five-membered-ring intramolecular hydrogen bond established between an amide NH group and a hydroxy group (1,2-e,a), which is additionally located in a 1,3 -cis- diaxial relationship to a second hydroxy group, can be used to select a unique direction on the six-membered-ring intramolecular hydrogen bond between the two axial OH groups, so that one of them behaves as an efficient cooperative donor. Talose derivative 3 was designed and synthesised to prove this hydrogen-bonding network by NMR spectroscopy, and the mannopyranoside derivatives 1 and 2 were used as models to demonstrate the presence in solution of the 1,2-(e,a)/five-membered-ring intramolecular hydrogen bond. Once a well-defined hydrogen-bond is formed between the OH and the amido groups of a pyranose ring, these hydrogen-bonding groups no longer act as independent hydrogen-bonding centres, but as hydrogen-bonding arrays. This introduces a new perspective on the properties of carbohydrate OH groups and it is important for the de novo design of molecular recognition processes, at least in nonpolar media. Carbohydrates 1,3 have shown to be efficient phosphate binders in nonpolar solvents owing to the presence of cooperative hydroxy centres in the molecule. [source] |